
Chapter 6

The Sewing Lemma

We fix throughout the chapter a time horizon T > 0 and two continuous functions
X,Y : [0, T ]→R. In this setting the integral

∫

0

T

Yr dXr (6.1)

can be defined as
∫
0

T
Yr Ẋr dr if X is differentiable or, more generally, as a Lebesgue

integral if X is of bounded variation, so that dX is a signed measure. The key
question we want to address is: how to define the integral when X does not have
such regularity? This is an example of a more general problem: given a distribution
(generalized function) Ẋ and a non-smooth function Y , how to define their product
Y Ẋ ?

A motivation is given by X=B with (Bt)t≥0 a Brownian motion. In this special
case, one can use probability theory to answer the question and define the integral
in (6.1), but one sees that there are several possible definitions: for example Itô,
Stratonovich, etc.

In this book, we are going to present the alternative answer provided by the
theory of Rough Paths, originally introduced by Terry Lyons. This theory yields
a robust construction of the integral in (6.1) and sheds a new “pathwise” light on
stochastic integration.

The approach we follow is based on the Sewing Lemma, to which this chapter
is devoted. In particular, we will show in Chapter 7 that the integral in (6.1) has a
canonical definition (Young integral) when Y and X are Hölder continuous, under a
constraint on their Hölder exponents. Going beyond this constraint requires Rough
Paths, which will be studied in Chapter 8.

6.1. Local approximation

If X is of class C1, we can define the integral function

It :=

∫

0

t

Yr Ẋr dr, t∈ [0, T ].

Then we have I0=0 and for 0! s! t!T

It− Is−Ys (Xt−Xs)=

∫

s

t

(Yr−Ys) Ẋr dr= o(t− s) (6.2)
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as t− s→ 0, because Ẋ is bounded and |Yr − Ys|= o(1) as |r − s|→ 0. Thus the
integral function It satisfies

I0=0, It− Is=Ys (Xt−Xs)+ o(t− s), 0! s! t!T . (6.3)

Remarkably, the relation ( 6.3) characterizes (It)t∈[0,T ]. Indeed, if I1 and I2 satisfy
(6.3) with the same functions X,Y , their difference ∆ := I1− I2 satisfies

|∆t−∆s|= o(t− s), 0! s! t!T ,
which implies d

dt∆t≡ 0 and then ∆t=∆0= I0
1− I02=0 by (6.3). This simple result

deserves to be stated in a separate

Lemma 6.1. Given any pair of functions X,Y : [0, T ]→R, there can be at most one
function I: [0, T ]→R satisfying ( 6.3).

The formulation (6.3) is interesting also because the derivative Ẋ of X does not
appear. Therefore, if we can find a function I: [0, T ]→R which satisfies (6.3), such
a function is unique and we can take it as a definition of the integral (6.1).

We will see in Section 7.1 that this program can be accomplished when X and
Y satisfy suitable Hölder regularity assumptions. In order to get there, in the next
sections we will look at a more general problem.

6.2. A general problem

Let us generalise the problem (6.3). We define A: [0, T ]!2 →R by setting for 0! s!
t!T

Ast :=Ys (Xt−Xs) . (6.4)

We can then decouple (6.3) in two relations:

I0=0, It− Is=Ast+Rst , 0! s! t!T , (6.5)

R: [0, T ]!
2 →R, Rst= o(t− s) . (6.6)

The general problem is, given a continuous A: [0, T ]!2 →R, to find a pair of functions
(I ,R) satisfying (6.5)-(6.6). We call

• A: [0, T ]!2 →R the germ,

• I: [0, T ]→R the integral ,

• R: [0, T ]!2 →R the remainder .

We are going to present conditions which allow to solve this problem.
Note that we always have uniqueness . Indeed, given (I1, R1) and (I2, R2) which

solve (6.5)-(6.6) for the same A, by the same arguments which lead to Lemma 6.1
we have d

dt (It
1− It2)≡ 0, hence I1= I2 and then R1=R2 by (6.5). We record this as

Lemma 6.2. Given any germ A, there can be at most one pair of functions (I , R)
satisfying ( 6.5)-( 6.6).
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6.3. An algebraic look

We first focus on relation (6.5) alone. For a fixed germ A, this equation has infinitely
many solutions (I , R), because given any I we can simply define R so as to fulfill
(6.5). Interestingly, all solutions admit an algebraic characterization in terms of R
alone.

Lemma 6.3. Fix a function A∈C2.

1. If a pair (I ,R)∈C1×C2 satisfies ( 6.5), then R satisfies

(δR)sut=−(δA)sut, ∀0! s!u! t!T . (6.7)

2. Viceversa, given any function R ∈C2 which satisfies ( 6.7), if we set It :=
A0t+R0t, the pair (I ,R)∈C1×C2 satisfies ( 6.5).

Proof. Relation (6.5) clearly implies (6.7), simply because δ(δI) = 0. Viceversa,
given R satisfying (6.7), we can define Lst :=Ast+Rst so that

Lst−Lsu−Lut=0.

Applying this formula to (s′, u′, t ′)= (0, s, t), we obtain that It :=L0t satisfies

It− Is=L0t−L0s=Lst=Ast+Rst

and the proof is complete because I0 :=L00=A00+R00=0, which follows by (6.7)
for s=u=0. "

We can now rephrase Lemma 6.3 as follows.

Proposition 6.4. Fix A∈C2. Finding a pair (I , R)∈C1×C2 satisfying ( 6.5) is
equivalent to finding R∈C2 such that

δRsut=−δAsut , ∀ 0! s!u! t!T . (6.8)

6.4. Enters analysis: the Sewing Lemma

So far we have analyzed (6.5). We now let (6.6) enter the game, i.e. we look for a pair
of functions (I ,R)∈C1×C2 which fulfills (6.5)-(6.6), given a (general) germ A∈C2.

We stress that condition (6.6) is essential to ensure uniqueness : without it, equa-
tion (6.5) admits infinitely many solutions, as discussed before Lemma 6.3. When
we couple (6.5) with (6.6), uniqueness is guaranteed by Lemma 6.2, but existence
is no longer obvious. This is what we now focus on.

We start with a simple necessary condition.

Lemma 6.5. For ( 6.5)-( 6.6) to admit a solution, it is necessary that the germ A
satisfies

|δAsut|= o(t− s), for 0! s!u! t!T . (6.9)
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Proof. If (6.5) admits a solution, by Proposition 6.4 we have |δAsut|= |δRsut|. If
furthermore R satisfies (6.6), we must have for 0! s!u! t!T

|δRsut|≤ |Rst|+ |Rsu|+ |Rut|= o(t− s)+ o(u− s)+ o(t−u)= o(t− s) . "

Remark 6.6. Choosing u= s in (6.9) we obtain that −Ass= o(t− s), which means
that Ass=0. Therefore a necessary condition for (6.5)-(6.6) to admit a solution is
that A vanishes on the diagonal of [0, T ]!2 .

Remarkably, the necessary condition in Lemma 6.5 is close to being sufficient:
it is enough to upgrade o(t− s) in O((t− s)η) for some η> 1. This is the content of
the celebrated Sewing Lemma, which we next present.

We have seen in the Sewing bound (Theorem 1.9) that any R ∈C2 such that
Rst= o(t− s) for 0! s! t!T satisfies an a priori estimate ∥R∥η!Kη∥δR∥η for any
η> 1. Of course, this estimate is only interesting if ∥δR∥η<∞ for some η> 1. This
property, that we call coherence, is at the heart of the celebrated Sewing Lemma
(Gubinelli [2], Feyel-de La Pradelle [1]), as it provides a sufficient condition on the
germ A for the solution of (6.5)-(6.6).

Definition 6.7. (Coherence) A germ A∈C2 is called coherent if, for some η>1,
it satisfies δA∈C3η, i.e. ∥δA∥η<∞. More explicitly:

∃η ∈ (1,∞): |δAsut|# |t− s|η , 0! s!u! t!T . (6.10)

Theorem 6.8. (Sewing Lemma) For any coherent germ A ∈ C2 there exists a
(unique) function I: [0, T ]→R such that |Ast− δIst|= o(t− s); equivalently, there
exists a unique pair (I ,R)∈C1×C2 such that

I0=0, It− Is=Ast+Rst with Rst= o(t− s) . (6.11)

• The “remainder” Rst := δIst−Ast satisfies the Sewing Bound:

∥R∥η≤Kη ∥δA∥η where Kη := (1− 21−η)−1 . (6.12)

• The integral I ∈C1 is the limit of Riemann sums of the germ:

It := lim
|P |→0

∑

i=0

#P−1

Atiti+1 (6.13)

along arbitrary partitions P={0= t0<t1<...<tk= t} of [0, t] with vanishing
mesh |P | :=maxi=0, . . . ,k−1 |ti+1− ti|→ 0 (we set #P := k).

The Sewing Lemma is a cornerstone of the theory of Rough Paths , to be intro-
duced in Chapter 8. We will already see in Chapter 7 an interesting application to
Young integrals. The (instructive) proof of Theorem 6.8 is postponed to Section 6.6.

Remark 6.9. For a fixed partition P of [0, t] we have, by δIst=Ast+Rst,

It=
∑

i=0

#P−1

Atiti+1+
∑

i=0

#P−1

Rtiti+1.
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Therefore, (6.13) is equivalent to

lim
|P |→0

∑

i=0

#P−1

Rtiti+1=0

which is the reason why one wants the remainder R to be small close to the diagonal.
The information Rst= o(t− s) is not enough in general to obtain the existence of
(I ,R), while the stronger estimate |Rst|# |t− s|η is sufficient.

6.5. The Sewing Map

Given a coherent germ A, by Theorem 6.8 we can find an integral I and a remainder
R which solve (6.5)-(6.6). We now look closer at the remainder R.

Lemma 6.10. In the setting of Theorem 6.8, the remainder R is a function of δA:
given two coherent germs A,A′ with δA= δA′, the corresponding remainders R,R ′
coincide. Moreover, the map δA +→R is linear.

Proof. By Proposition 6.4 we have δ(R−R′)= δ(A′−A)=0, hence R−R′= δf for
some f ∈C1 (see Remark 1.10). Both |Rst| and |Rst

′ | are o(|t− s|) by (6.6), hence
|ft− fs|= o(|t− s|). Then f must be constant by Lemma 6.1 and therefore R=R ′.
Linearity of the map δA +→R is easy. "

Since R is a function of δA, we introduce a specific notation for this map:

R=−Λ(δA)

where the minus sign is for later convenience.
Let us describe more precisely this map Λ. Throughout the following discussion,

we fix arbitrarily η ∈ (1,∞).

• Domain. The map Λ is defined on δA for coherent germs A, see Definition 6.7.
The domain of Λ is then C3

η∩ δC2, where we denote by δC2⊆C3 the image
of the space C2 under the operator δ in (1.23).

• Codomain. The map Λ sends δA to −R, and we have |Rst|# |t − s|η, see
(6.12). A natural choice of codomain for Λ is then C2

η.

• Characterization. In view of Proposition 6.4 and Lemma 6.2, the function
−R=Λ(δA) is characterized by the properties

δ(−R)= δA , |Rst|= o(t− s) .

The second condition is already enforced by our choice C2
η of codomain for Λ,

which yields |Rst|# |t− s|η (with η> 1). The first relation can be rewritten
as δ(Λ(B))=B for all B in the domain of Λ, that is δ ◦Λ is the identity map.

In conclusion, we have proved the following result.

Theorem 6.11. (Sewing Map) Let η ∈ (1,∞). There exists a unique map

Λ:C3
η∩ δC2−→C2

η,
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called the Sewing Map, such that δ ◦Λ= id is the identity on C3
η∩ δC2.

• The map Λ is linear and satisfies

∥Λ(B)∥η!Kη∥B∥η ∀B ∈C3η∩ δC2 , (6.14)

where Kη is the same constant as in ( 6.12).

• Given a coherent germ A ∈C2, i.e. such that δA ∈C3η, the unique solution
(I ,R) of ( 6.5)-( 6.6) is R :=−Λ(δA) and It :=A0t+R0t.

6.6. Proof of the Sewing Lemma

We prove the Sewing Lemma, i.e. Theorem 6.8.

Proof. We fix a germ A∈C2 with ∥δA∥η<∞ for some η>1 (we do not require Aab=
o(b−a)). Our goal is to build a function I: [0, T ]→R such that |δIst−Ast|=o(t−s).
Uniqueness of I follows by Lemma 6.2, while the bound (6.12) follows by the Sewing
Bound (1.26) applied to Rst := δIst−Ast (note that δR=−δA, because δ ◦ δ=0).

We fix 0! s< t!T . Given a partition P ={s= t0<t1< .. . < tm= t} of [s, t], let
us define IP(A) :=

∑
i=0
m−1Atiti+1 as in (1.20). The following bound holds:

|IP(A)−Ast|≤Cη ∥δA∥η (t− s)η with Cη :=
∑

n≥1

2η

nη
<∞, (6.15)

as we showed in the proof of Theorem 1.18, see (1.46), which applies to any function
A=(As,t). Similarly, if Q⊇P is another partition of [s, t],

|IQ(A)− IP(A)| !
∑

i=0

#P−1

|IQ∩[ti,ti+1](A)−Atiti+1|

! Cη ∥δA∥η
∑

i=0

#P−1

(ti+1− ti)η

! Cη ∥δA∥η |P |η−1
∑

i=0

#P−1

(ti+1− ti)

! Cη ∥δA∥ηT |P |η−1

where we recall that |P | :=maxi (ti+1− ti). Finally, if P and P ′ are arbitrary par-
titions, setting Q :=P ∪P ′ and applying the triangle inequality yields

|IP ′(A)− IP(A)|≤Cη ∥δA∥ηT (|P |η−1+ |P ′|η−1) .

This shows that the family IP(A) is Cauchy as |P |→ 0 (for every ϵ> 0 there exists
δϵ> 0 such that |P |, |P ′|≤ δϵ implies |IP ′(A)− IP(A)|≤ ϵ), hence it admits a limit
as |P |→ 0, that we call Jst.

We now define It := J0t. We claim that

It− Is= Jst for all 0≤ s< t≤T .
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Indeed, if we consider partitions P ′ on [0, s] and P of [s, t], then P ′′ :=P ∪P ′ is a
partition of [0, t] such that IP ′′(A)−IP ′(A)=IP(A), and taking the limit of vanishing
mesh we get J0t− J0s= Jst, that is the claim.

Finally, taking the limit of relation (6.15), since IP(A)→Jst= It− Is, we obtain
our goal |δIst−Ast|# (t− s)η=o(t− s). This completes the proof, since (6.13) holds
by construction. "

Remark 6.12. Taking the limit of (6.15) gives

|Rst|≤Cη ∥δA∥η |t− s|η , Rst := δIst−Ast , 0! s< t!T ,

which is the bound (6.12) withKη replaced by the worse constant Cη. This is because
the estimate (6.15) holds for arbitrary partitions.
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