
Chapter 7

The Young integral

We can now come back to the problem that we discussed at the beginning of
Chapter 6: given two continuous functions X, Y : [0, T ]→R, how can we give a
meaning to the integral It=

∫
0

t
Y dX for t∈ [0, T ]?

A natural answer, recall (6.3), is to look for a function I: [0, T ]→R satisfying

I0=0, It− Is=Ys (Xt−Xs)+ o(t− s), 0! s! t!T . (7.1)

As an application of the Sewing Lemma (Theorem 6.8), we can show that such a
function I exists (and is necessarily unique) when X and Y are Hölder functions
of exponents α, β ∈ ]0, 1] such that α+ β > 1. This leads to the notion of Young
integral , to which this chapter is devoted.

Going beyond this setting, in order to treat the case α+ β ≤ 1, will require the
notion of Rough Paths, that we discuss in Chapter 8.

7.1. Construction of the Young integral

As we did in Chapter 6, it is convenient to rewrite (7.1) as follows: we look for a
function I: [0, T ]→R satisfying

I0=0, It− Is=Ast+Rst with Rst= o(t− s), (7.2)

where the germ A: [0, T ]!
2 →R is defined by

Ast=Ys δXst=Ys (Xt−Xs) . (7.3)

This is the framework of the Sewing Lemma, see Theorem 6.8, for which we need to
fulfill the coherence condition (6.10), that is ∥δA∥η<∞ for some η> 1 (we use the
norms introduced in (1.9)). Recalling that

δAsut :=Ast−Asu−Aut=−δYsu δXut ,

see (1.32), we can write for any α, β ∈ ]0, 1]

|δAsut|= |Yu−Ys| |Xt−Xu| =⇒ ∥δA∥α+β! ∥δX∥α ∥δY ∥β . (7.4)

As a consequence, it is natural to assume that ∥δX∥α<∞ and ∥δY ∥β<∞ for α,
β ∈ ]0, 1] such that α+ β> 1.

We can now give a consistent definition of the integral It=
∫
0

t
Y dX, known as

Young integral , when X and Y are suitable Hölder functions.
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Theorem 7.1. (Young integral) Fix α, β ∈ ]0,1] with α+ β>1. For every (X,
Y ) ∈ Cα× Cβ there is a (necessarily unique) function I: [0, T ]→R which satisfies
( 7.1), i.e.

I0=0, It− Is=Ys (Xt−Xs)+ o(t− s) . (7.5)

The functon I, called the Young integral, is also denoted by It=:
∫
0

t
Y dX.

The remainder Rst := It− Is−Ys (Xt−Xs) satisfies the bound

∥R∥α+β≤Kα+β ∥δX∥α ∥δY ∥β , (7.6)

where Kη := (1− 21−η)−1, see ( 6.12). This yields I ∈ Cα, more precisely

∥δI∥α≤ (∥Y ∥∞ + Kα+βT β ∥δY ∥β) ∥δX∥α . (7.7)

The Young integral I =(It)t∈[0,T ], as a function of (X,Y ), is a continuous bilinear
map I: Cα× Cβ→ Cα.

Proof. Recalling (7.2)-(7.4), we have ∥δA∥α+β!∥δX∥α∥δY ∥β<∞, that is δA∈C3η
with η = α + β > 1, where the spaces Ck

η were defined in (1.10). By the Sewing
Lemma, see Theorem 6.8, there exists a (unique) function I which satisfies (6.11)
and (6.12), hence (7.5) and (7.6) hold.

In order to prove (7.7), we note that

∥δI∥α ! ∥A∥α+ ∥R∥α! ∥Y ∥∞ ∥δX∥α+T β ∥R∥α+β
! ∥Y ∥∞ ∥δX∥α+T βKα+β ∥δX∥α ∥δY ∥β .

Recalling Remark 1.4, in particular (1.15), this bound implies that I is a continuous
function of (X,Y ), as a map from Cα× Cβ to Cα.

We finally prove that the map (X,Y ) )→I is bilinear: givenX,X ′∈Cα and a fixed
Y ∈ Cβ, if I satisfies (7.5) for (X,Y ) and I ′ satisfies (7.5) for (X ′, Y ), then for any
a, b∈R the function Ît :=a It+ b It′ satisfies (7.5) for (X̂ :=aX+ bX ′, Y ). Linearity
with respect to Y is proved similarly. "

Remark 7.2. The setting of Theorem 7.1 provides a natural example of a germ
Ast :=Ys δXst which is not in C2

η for any η>1 (excluding the trivial case when Y ≡0
on the intervals where X is not constant, hence A≡ 0), but it satisfies δA∈C3η with
η=α+ β> 1.

Remark 7.3. (Beyond Young) It is natural to wonder what happens in The-
orem 7.1 for (X,Y )∈Cα×Cβ with α+ β≤1. In this case, there might be no solution
to ( 6.5)-( 6.6), because the necessary condition (6.9) in Lemma 6.5 can fail. For a
simple example, consider Xt= tα and Yt= tβ for t∈ [0, T ] and note that for s=0 and
u= t

2
we have by (1.32)

|δAsut|= |δA0
t

2
t|=

∣∣∣∣∣∣δY0 t
2

∣∣∣∣∣∣
∣∣∣∣∣∣δX t

2
t

∣∣∣∣∣∣=
( t
2

)
β
(
tα−

( t
2

)α)
# tα+β , (7.8)

which is not o(t− s)= o(t) when α+ β ≤ 1.
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In order to define a notion of integral It=
∫
0

t
YsdXs when (X,Y )∈ Cα× Cβ with

α+ β ≤ 1, we need to relax condition (6.3), see Definition 8.1 below. This will lead
to the notion of Rough Paths , described in Chapter 8.

7.2. Integral formulation of Young equations

In this section we explain why we call (2.4) a Young equation. In fact, we can
interpret the finite difference equation (2.4) as an integral equation, using the Young
integral of section 7.1.

Proposition 7.4. Let Z ∈ Cα([0, T ];Rk) with α> 1

2
. Then Z satisfies ( 2.4) if and

only if

Zt=Z0+

∫

0

t

σ(Zs) dXs, t∈ [0, T ], (7.9)

where the integral is in the Young sense.

Proof. We consider the germ Ast :=σ(Zs) δXst, 0! s! t!T . By (7.4)

|δAsut|= |σ(Zu)− σ(Zs)||Xt−Xu| =⇒ ∥δA∥2α! ∥∇σ∥∞∥δX∥α∥δZ∥α .

Therefore we obtain that (2.4) is equivalent to (7.5) above. "

In the case α∈
( 1
3
, 1
2

]
, this argument does not work and the Young integral is not

adapted, since the germ Ast :=σ(Zs) δXst has the property δA∈C32α with 2α! 1, so
that the Sewing Lemma can not be applied. However the equation (3.19) suggests
another germ:

Ast :=σ(Zs)Xst
1 +σ2(Zs)Xst

2 , 0! s! t!T .

Note that A = δZ − Z [3], in the notation (3.19). Then by (3.27) we know that
δA∈C33α. Therefore we can interpret the formula

δZ =A−Λ(δA)
as

Zt=Z0+

∫

0

t

σ(Zs) dXs, 0! t!T ,

which for the moment is only a notation that will be made more precise in chapter 10.

7.3. Local existence via contraction

As an application of the estimates on the Young integral of Theorem 7.1, we want to
give a local existence result for equation (2.4) which does not rely on compactness
and which can be therefore used also in infinite dimension.

Let Z0∈Rk and X ∈Cα([0, T ];Rd) be given, σ:Rk→Rd⊗ (Rd)∗ smooth and the
unknown Z: [0,T ]→Rk is such that σ(Z)∈Cα and 2α>1, so that the right-hand side
of (7.9) can be interpreted as a Young integral. We want now to show the following
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Theorem 7.5. (Contraction for Young differential equations) Let σ:
Rk→Rk ⊗ (Rd)∗ be of class C2 with ∇σ and ∇2 σ bounded. Let α ∈ ]1

2
, 1] and

X ∈ Cα([0, T ];Rd) fixed. It T > 0 is small enough, then for any Z0∈R there exists
a unique Z ∈ Cα([0, T ];Rk) which satisfies ( 7.9).

Proof. For all f ∈ Cα([0, T ];Rk) we have

|σ(ft)−σ(fs)|! ∥∇σ∥∞ |ft− fs|
so that

∥δσ(f)∥α! ∥∇σ∥∞ ∥δf ∥α.
By (7.7) with α= β we obtain for all f ∈ Cα satisfying (7.9)

∥δf ∥α! (|σ(f0)| + (1+K2α)T α∥∇σ∥∞∥δf ∥α) ∥δX∥α
since

∥σ(f)∥∞! |σ(f0)|+T α∥δσ(f)∥α.
Therefore, if T satisfies

T α! 1
2

1
(1+K2α) ∥∇σ∥∞∥δX∥α

then we have the following a priori estimate on solutions to (7.9)

∥δZ∥α! 2|σ(Z0)| ∥δX∥α .
We fix such T and we set Cα(Z0) :={f ∈Cα: f0=Z0,∥δf ∥α!2|σ(Z0)| ∥δX∥α}. Then
we define Λ: Cα→ Cα given by

Λ(f) :=h, ht :=Z0+

∫

0

t

σ(fs) dXs, t∈ [0, T ].

It is easy to see, arguing as above, that Λ acts on Cα(Z0), namely Λ:Cα(Z0)→Cα(Z0).
Note that the map Cα(Z0)×Cα(Z0)∋ (a, b) )→∥δa−δb∥α defines a distance on Cα(Z0)
which induces the same topology as ∥·∥Cα. We want to show that Λ is a contraction
for this distance if T is small enough. By (7.7) we have for α= β

∥δΛ(a)− δΛ(b)∥α!(∥σ(a)−σ(b)∥∞ + K2αT α ∥δσ(a)− δσ(b)∥α) ∥δX∥α .
!T α (1 + K2α) ∥δX∥α ∥δσ(a)− δσ(b)∥α .

We now need to estimate ∥δσ(a)− δσ(b)∥α. By Lemma 2.8

∥δσ(a)− δσ(b)∥α! ∥∇σ∥∞∥δa− δb∥α+∥∇2σ∥∞(∥δa∥α+∥δb∥α) ∥a− b∥∞.

Since, as usual, ∥a− b∥∞!T α∥δa− δb∥α, we obtain

∥δσ(a)− δσ(b)∥α! (∥∇σ∥∞+T α∥∇2σ∥∞(∥δa∥α+∥δb∥α))∥δa− δb∥α. (7.10)

Therefore, for all a, b∈ Cα(Z0)

∥δΛ(a)− δΛ(b)∥α!CT ∥δa− δb∥α,

where CT := T α(1 + K2α) ∥δX∥α (∥∇σ∥∞+T α∥∇ 2σ∥∞4|σ(Z0)| ∥δX∥α). It is now
enough to consider T small enough so that CT < 1. "
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7.4. Properties of the Young integral

The Young integral
∫
0

t
Y dX , defined in Theorem 7.1, shares many properties with

the classical Riemann-Lebesgue integral, that we now discuss.
A elementary but useful observation is that

∫
0

t
Y dX is a linear function of Y (for

fixed X) and a linear function of X (for fixed Y ), by bilinearity.
For an interval [s, t]⊂ [0, T ] we will use the notation

It− Is=:
∫

s

t

Y dX .

If the integrand Yu= c is constant for all u∈ [s, t], then
∫
s

t
Y dX= c (Xt−Xs), which

follows directly from (7.5). As a corollary, we obtain the following useful formula
for the remainder.

Lemma 7.6. Let (X,Y )∈Cα×Cβ for α,β∈ ]0,1] with α+β>1 and let It :=
∫
0

t
YudXu

be the Young integral, see Theorem 7.1. Then the remainder

Rst := It− Is−Ys (Xt−Xs), 0! s! t!T ,
admits the explicit formula

Rst=

∫

s

t

(Yu−Ys) dXu, 0! s! t!T , (7.11)

where the right hand side is a Young integral.

Proof. By linearity and the basic property mentioned above, we obtain
∫

s

t

(Yu−Ys) dXu=

∫

s

t

YudXu−
∫

s

t

YsdXu= It− Is−Ys (Xt−Xs)=Rst . "

An important property is integration by parts , which follows by the uniqueness
of the solution for the problem (6.5)-(6.6), recall Lemma 6.2.

Proposition 7.7. (Integration by parts) Fix α, β ∈ ]0, 1] with α+ β> 1. For
all (X,Y )∈ Cα× Cβ the Young integral satisfies

∫

0

t

XdY +

∫

0

t

Y dX = XtYt−X0Y0 . (7.12)

Proof. Let us set It′ :=
∫
0

t
X dY +

∫
0

t
Y dX. By the property (7.5) we have

It
′− Is′=Ys(Xt−Xs)+Xs(Yt−Ys)︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

Ast

+ o(t− s) .

Next we set It′′ :=XtYt−X0Y0 and note that, by direct computation,

It
′′− Is′′=Ys(Xt−Xs)+Xs(Yt−Ys)︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

Ast

+(Xt−Xs)(Yt−Ys)︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Rst

,
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where |Rst|! ∥δX∥α∥δY ∥β |t− s|α+β = o(t− s). By Lemma 6.2, for any germ A,
there can be at most one function I which satisfies δIst=Ast+ o(t− s) (6.5)-(6.6),
hence I ′= I ′′. "

We next discuss the chain rule.

Proposition 7.8. (Chain rule) Let X ∈ Cα with α ∈ ]1
2
, 1]. Let ϕ:R→R be

differentiable with ϕ′∈Cγ(R), for γ∈ ]0,1] such that γ> 1

α
−1 (a sufficient condition

is that ϕ∈C2). Then ϕ′(X)= ϕ′ ◦X ∈ Cαγ and

ϕ(Xt)− ϕ(X0)=

∫

0

t

ϕ′(X) dX , (7.13)

where the right hand side is a Young integral.

Proof. It is easy to see that ϕ′(X)∈ Cαγ, which implies that
∫
0

t
ϕ′(X) dX is well-

defined as a Young integral, since α+αγ > 1. By the definition (7.5) of the Young
integral, proving (7.13) amounts to showing that

|ϕ(Xt)− ϕ(Xs)− ϕ′(Xs) (Xt−Xs)|$ o(t− s).
By the classical Lagrange theorem, if, say, Xt>Xs, then

ϕ(Xt)− ϕ(Xs)− ϕ′(Xs)(Xt−Xs)= (ϕ′(ξ)− ϕ′(Xs))(Xt−Xs)

with ξ ∈ ]Xs, Xt[. Since ϕ′∈ Cγ and X ∈ Cα, it follows that

|ϕ(Xt)− ϕ(Xs)− ϕ′(Xs) (Xt−Xs)|$ |Xt−Xs|γ+1= o(t− s)

since γ+1> 1

α
% 1. This completes the proof. "

More generally, we have

Corollary 7.9. In the same setting of Proposition 7.8, for all s! t

ϕ(Xt)− ϕ(Xs)= ϕ′(Xs)(Xt−Xs)+

∫

s

t

(ϕ′(Xr)− ϕ′(Xs)) dXr . (7.14)

Proof. It is enough to note that, by (7.13),

ϕ(Xt)− ϕ(Xs) =

∫

s

t

ϕ′(Xr)dXr

= ϕ′(Xs)(Xt−Xs)+

∫

s

t

(ϕ′(Xr)− ϕ′(Xs)) dXr ,

where all integrals are in the Young sense. "

In particular, for X ∈ Cα with α> 1

2
, we have

Xt
2

2
− Xs

2

2
=Xs(Xt−Xs)+

∫

s

t

(Xr−Xs) dXr, (7.15)
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which can be rewritten as follows:
∫

s

t

(Xr−Xs) dXr=
Xt

2

2
− Xs

2

2
−Xs (Xt−Xs)=

(Xt−Xs)2

2
. (7.16)

7.5. More on Hölder spaces

We discuss further properties of the Hölder spaces Cα for α∈ (0, 1) (excluding the
case α=1 of Lipschitz functions). These will be useful in the next Section 7.6, when
we discuss the uniqueness of the Young integral.

Let us denote by C∞ the space of infinitely differentiable functions. We note
that C∞⊂ Cα for every α∈ (0, 1), but C∞ is not dense in Cα.

Theorem 7.10. For any α∈(0,1), the closure of C∞ in Cα is the subset C0α defined by

C0α :={f : [0, T ]→R : |f(t)− f(s)|= o(|t− s|α) uniformly as |t− s|→ 0} .

Remark 7.11. Note that f ∈ C0α if and only if

∀ϵ> 0 ∃δϵ> 0: |f(t)− f(s)|≤ ϵ|t− s|α for |t− s|≤ δϵ , (7.17)

which implies (exercise) that C1⊂ C0α⊂ Cα for α∈ (0, 1). It follows that the closure
of C1 in Cα is again C0α, simply because C∞⊂C1⊂ C0α.

Exercise 7.1. Prove that C1⊂ C0α and C0α⊂ Cα for α∈ (0, 1) (inclusions are strict).

We stress that the subset C0α is strictly included in Cα, but what is left out is not
so large, in the following sense.

Exercise 7.2. Prove that Cα′⊂ C0α for 0<α<α′< 1 (the inclusion is strict).

The proof of Theorem 7.10, which we defer to Section 7.7, is based on the
following classical approximation result (also proved in Section 7.7).

Lemma 7.12. For any continuous f : [0, T ]→R there is a sequence fn ∈C∞ such
that ∥fn− f ∥∞→ 0. One can take fn with the same modulus of continuity as f, in
the following sense: given an arbitrary function h(·),

if |f(t)− f(s)|≤h(t− s) ∀s, t∈ [0, T ] ,
then |fn(t)− fn(s)|≤h(t− s) ∀s, t∈ [0, T ], ∀n∈N . (7.18)

It follows that ∥δfn∥α≤∥δf ∥α for all n∈N and α∈ (0, 1).

Remark 7.13. Lemma 7.12 holds with no change for functions f : [0, T ]→R, where
R is an arbitrary Banach space. One only needs a notion of integral

∫
0

T
fs ds when

f is continuous, and for this one can take the Riemann integral, i.e. the limit of
Riemann sums

∑
i f(ti)(ti+1− ti) along partitions (ti) of [0, T ] with vanishing mesh

maxi |ti+1− ti|→ 0 (one can check that such Riemann sums form a Cauchy family).
This integral satisfies the key usual properties: f )→

∫
0

T
fsds is linear, |

∫
0

T
fs ds|≤∫

0

T |fs| ds and
∫
0

T
fs
′ds= fT − f0.
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7.6. Uniqueness of the Young integral

Throughout this section we denote by It
Young the Young integral It=

∫
0

t
Y dX built

in Theorem 7.1. We want to compare it with the classical integral

It
classical : =

∫

0

t

Yu Ẋu du

which is defined for continuous Y and continuously differentiable X ∈C1.
We remarked in (6.2)-(6.3) that Itclassical satisfies property (7.5), therefore Itclassical

coincides with It
Young when (X, Y )∈C1× Cβ, for any β ∈ ]0, 1]. In other terms, the

Young integral is an extension of the classical integral .
We can be more precise: by Theorem 7.1, for α, β ∈ ]0, 1] with α+ β > 1, the

Young integral IYoung= (It
Young)t∈[0,T ] is a continuous bilinear map from Cα× Cβ to

Cα. This means that IYoung is a continuous extension of the classical integral Iclassical
defined on C1× Cβ. It would be tempting to state that it is the unique continuous
extension, but this is not true, because C1⊂Cα is not dense in Ca (see Theorem 7.10
and Remark 7.11).

Interestingly, it is possible to characterize the Young integral as the unique
continuous extension of Iclassical, if we let the exponent α vary. Given ᾱ∈ ]0, 1[, we
define the space

C>ᾱ :=
⋃

α∈]ᾱ,1]
Cα

and we agree that fn→ f in C>ᾱ if and only if fn→ f in Cα for some α> ᾱ. The
basic observation is that C1 is dense in C>ᾱ: for any f ∈C>ᾱ we can find a sequence
fn∈C1 such that fn→ f in C>ᾱ.7.1

If we fix ᾱ= 1− β, for β ∈ ]0, 1], the Young integral IYoung= (It
Young)t∈[0,T ] is a

continuous map from C>(1−β)× Cβ to C>(1−β), by Theorem 7.1.
These observations yield immediately the following result.

Proposition 7.14. (Characterization of the Young integral, I) Fix any
β ∈ ]0,1]. TheYoung integral IYoung=(It

Young)t∈[0,T ], viewed as a map from C>(1−β)×
Cβ to C>(1−β), is the unique continuous extension of the classical integral Iclassical=
(It

classical)t∈[0,T ] defined on C1× Cβ.
Explicitly, IYoung is the unique map I : C>(1−β)× Cβ→ C>(1−β) such that:

• It= It
classical=

∫
0

t
Yu Ẋu du for X ∈C1;

• if (Xn, Yn)→ (X, Y ) in Cα× Cβ, for some α> 1− β, then we have the con-
vergence I(Xn, Yn)→ I(X,Y ) in Cα′ for some α ′> 1− β.

Alternatively, we can characterize the Young integral as the unique continuous
extension of the classical integral on Cα× Cβ for fixed α, provided we consider a
weaker notion of convergence on Cα.

7.1. If f ∈ Cα with α> ᾱ, by Exercise 7.2 we have f ∈ C0α
′ for any α′∈ ]ᾱ,α[, then by Theorem 7.10

we can find fn∈C∞ such that fn→ f in Cα′, hence fn→ f in C>ᾱ.
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Definition 7.15. Fix α∈ ]0, 1]. Given fn, f : [0, T ]→R, with n∈N, we write

fn&α f ⇐⇒ ∥fn− f ∥∞→ 0 and sup
n∈N

∥δfn∥α<∞ . (7.19)

In other terms, fn&α f if and only if fn→ f in the sup-norm and, moreover, the
sequence fn is bounded in Cα.

We leave it as an exercise to check some basic properties.

Exercise 7.3. Fix α∈ ]0, 1] and let fn, f : [0, T ]→R, with n∈N. Prove the following.

1. If fn&α f , then f ∈ Cα; more precisely ∥δf ∥α≤ supn∈N ∥δfn∥α<∞.

2. If fn&α f , then fn→ f in Cα′ for any α′<α, but not necessarily fn→ f in Cα.

3. If fn&α f and ϕ:R→R is Lipschitz, then ϕ(fn)&αϕ(f).

4. In the definition (7.19) of fn&α f , the uniform convergence ∥fn− f ∥∞→ 0 can be
replaced by pointwise convergence: fn(t)→ f(t) for every t∈ [0, T ].

We can now provide the following characterization of the Young integral.

Theorem 7.16. (Characterization of the Young integral, II) Fix α,
β∈ ]0,1] with α+ β>1. The Young integral IYoung=(ItYoung)t∈[0,T ] is the unique map
I: Cα× Cβ→ Cα such that:

1. It= It
classical=

∫
0

t
Yu Ẋu du for X ∈C1;

2. if Xn&αX and Yn&βY, we have I(Xn, Yn)&α I(X,Y ).

Proof. We already know that the Young integral IYoung satisfies property 1. Let
us show that it also satisfies property 2: given Xn&αX and Yn&β Y , we need to
prove that

IYoung(Xn, Yn)&α IYoung(X,Y ) . (7.20)

Let us fix α′<α, β ′< β such that we still have α ′+ β ′> 1. We know by Exercise
7.3 that Xn→X in Cα′ and Yn→Y in Cβ ′. Since the Young integral is a continuous
bilinear operator IYoung: Cα′× Cβ ′→ Cβ ′, we have the convergence IYoung(Xn, Yn)→
IYoung(X,Y ) in Cα′, which implies

∥IYoung(Xn, Yn)− IYoung(X,Y )∥∞→ 0.

To prove (7.20), it remains to observe that, by (7.7),

sup
n
∥IYoung(Xn, Yn)∥α! sup

n
(∥Yn∥∞+Kα+βT α ∥δYn∥β)∥Xn∥α<∞.

We next consider an operator I: Cα× Cβ→ Cα which satisfies properties 1 and 2
and we show that it must coincide with the Young integral IYoung. Given X ∈Cα and
Y ∈Cβ, by Lemma 7.12 we can construct a sequence (Xn)⊂C1 with ∥Xn−X∥∞→0
and ∥Xn∥α! ∥X∥α. By property 2 we have I(Xn, Y )&α I(X, Y ) and IYoung(Xn,
Y )&α IYoung(X,Y ), which implies pointwise convergence: for any t∈ [0, T ]

It(X,Y )= lim
n
It(Xn, Y ) and It

Young(X,Y )= lim
n
It
Young(Xn, Y ) .
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By property 1 we have It(Xn, Y )= It
Young(Xn, Y ) for any n, hence

It(X,Y )= It
Young(X,Y ) ∀t∈ [0, T ],

which completes the proof. "

7.7. Two technical proofs
We give here the proof of Theorem 7.10 and Lemma 7.12.

Proof of Lemma 7.12. We extend f : [0, T ]→R to a function defined on the whole
real line, by setting f(t)= f(0) for t< 0 and f(t)= f(T ) for t >T .

Let us fix a C∞ function ϕ:R→R supported in [−1, 1] with unit integral:∫
Rϕ(u) du=1. Note that ϕn(t) :=nϕ(nt) is supported in

[
− 1

n
, 1
n

]
and also has unit

integral:
∫
Rϕn(u) du=1. We then define fn= ϕn ∗ f , that is

fn(t) :=

∫

R
ϕn(t−u) f(u) du.

It is a classical result that fn ∈ C∞ (we can differentiate inside the integral by
dominated convergence, since f is bounded).

We next write

fn(t)=

∫

R
ϕn(u) f(t−u) du=

∫

R
ϕ(v) f

(
t− v

n

)
dv,

which implies ∥fn− f ∥∞≤ supt∈R,|u|≤1
∣∣∣∣f
(
t− v

n

)
− f(t)

∣∣∣∣ (since ϕ has unit integral),
hence ∥fn− f ∥∞→∞. Property (7.18) is also directly checked. "

Proof of Theorem 7.10. First we show that C0α is closed in Cα: given fn in C0α and
f ∈ Cα such that ∥fn− f ∥α→ 0, we need to show that f ∈ C0α, that is (7.17) holds.
For s< t and n∈N we can write, by the triangle inequality,

|f(t)− f(s)|
(t− s)α ≤∥δf − δfn∥α+

|fn(t)− fn(s)|
(t− s)α . (7.21)

Fix n= n̄ϵ such that ∥δfn̄ϵ− δf ∥α<
ϵ

2
. Since fn̄ϵ∈C0α, by (7.17) we can fix δϵ>0 such

that for |t− s|≤ δ the last term in (7.21) is ≤ ϵ

2
and we are done.

It remains to show that, for any f ∈ C0α, there is a sequence fn ∈ C∞ such
that ∥fn− f ∥∞+ ∥δfn− δf ∥α→ 0 (recall Remark 1.4). We define fn ∈C∞ as in
Lemma 7.12, so we only need to show that ∥δfn− δf ∥α→ 0.

Since f ∈ C0α, property (7.17) holds. The same property holds replacing for fn,
uniformly for n∈N, thanks to relation (7.18). This means that for any ϵ> 0, for all
0! s< t!T with |t− s|! δϵ, and for any n∈N, we can write

|(fn− f)(t)− (fn− f)(s)|
(t− s)α ! |fn(t)− fn(s)|

(t− s)α +
|f(t)− f(s)|
(t− s)α ! 2 ϵ .

If we fix n̄ϵ> 0 such that ∥fn− f ∥∞! ϵ (δϵ)α for all n≥ n̄ϵ, for |t− s|> δϵ we get

|(fn− f)(t)− (fn− f)(s)|
(t− s)α ! 2∥fn− f ∥∞

(δϵ)α
! ϵ .
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Altogether, the previous relations show that ∥δfn−δf ∥α!2ϵ for n≥ n̄ϵ. This implies
that ∥δfn− δf ∥α→ 0. "
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