CHAPTER 7

THE YOUNG INTEGRAL

We can now come back to the problem that we discussed at the beginning of
Chapter 6: given two continuous functions X, Y: [0, 7] — R, how can we give a
meaning to the integral I, = [ YdX for ¢ € [0,7]?

A natural answer, recall (6.3), is to look for a function I:[0,7] — R satisfying
Iy=0, Ii— =Y. (X; — Xs) +o(t —s), 0<s<t<T. (7.1)

As an application of the Sewing Lemma (Theorem 6.8), we can show that such a
function I exists (and is necessarily unique) when X and Y are Holder functions
of exponents «, # € ]0, 1] such that « + 5> 1. This leads to the notion of Young
integral, to which this chapter is devoted.

Going beyond this setting, in order to treat the case o+ 3 <1, will require the
notion of Rough Paths, that we discuss in Chapter 8.

7.1. CONSTRUCTION OF THE YOUNG INTEGRAL

As we did in Chapter 6, it is convenient to rewrite (7.1) as follows: we look for a
function I:[0,7] — R satisfying

]0:0, It_]S:ASt+RSt with Rst:O(t—S), (72)
where the germ A:[0,T])2 — R is defined by
Ast:}/;aXst:}/;(Xt_X5> . (73)

This is the framework of the Sewing Lemma, see Theorem 6.8, for which we need to
fulfill the coherence condition (6.10), that is [|[0A|], < co for some 1> 1 (we use the
norms introduced in (1.9)). Recalling that

5Asut = Ast - Asu - Aut = _6}{911 5Xut )
see (1.32), we can write for any «, 5 € ]0, 1]
0Acue| = [Yu = Yo | Xe = Xu| = 04+ <[|0X [|a 16 ][5 (7.4)

As a consequence, it is natural to assume that ||0.X ||, < oo and [[6Y [|5 < oo for a,
g€ ]0,1] such that a+ 3> 1.

We can now give a consistent definition of the integral I, = | g Y dX, known as
Young integral, when X and Y are suitable Holder functions.
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100 THE YOUNG INTEGRAL

THEOREM 7.1. (YOUNG INTEGRAL) Fiz o, f € ]0,1] with a+ 3>1. For every (X,
Y) € C¥x C? there is a (necessarily unique) function I:[0,T] — R which satisfies
(7.1), i.e.

Ih=0, L—IL=Y,(X,—X,) +o(t—s). (7.5)

The functon I, called the Young integral, is also denoted by I;=: fJYdX.
The remainder Ry :=1I;— I, — Y, (X; — X;) satisfies the bound

[Rllatp < Kayp [0X o [|0Y ]|, (7.6)
where K, :=(1—=2'""71 see (6.12). This yields I €C*, more precisely
167 o < (Y lloo + KatsT? [[6Y[|5) 0X o - (7.7)

The Young integral I = (Iy)icjo,r), as a function of (X,Y), is a continuous bilinear
map 1:C* x CP— C°.

Proof. Recalling (7.2)-(7.4), we have ||[0A||o+3<[[6X || ||0Y || < 00, that is §A € CF
with n=a+ 3> 1, where the spaces C}' were defined in (1.10). By the Sewing
Lemma, see Theorem 6.8, there exists a (unique) function I which satisfies (6.11)

and (6.12), hence (7.5) and (7.6) hold.

In order to prove (7.7), we note that

1670la < [ Alla+ 1 Rlla < 1Y lloo 10X |l +T7 | Rlla+s

<
< Y Nloo 16X o+ T7 Ko 10X (o [16Y ]

Recalling Remark 1.4, in particular (1.15), this bound implies that I is a continuous
function of (X,Y), as a map from C%x C¥ to C*.

We finally prove that the map (X,Y") [ is bilinear: given X, X’ €C® and a fixed
Y €CP, if I satisfies (7.5) for (X,Y) and I’ satisfies (7.5) for (X', Y), then for any
a,beR the function I;:=aI,+ b} satisfies (7.5) for (X :=a X +bX",Y). Linearity
with respect to Y is proved similarly. U

Remark 7.2. The setting of Theorem 7.1 provides a natural example of a germ
Ast:=Y;0 X which is not in CJ for any 7> 1 (excluding the trivial case when Y =0
on the intervals where X is not constant, hence A=0), but it satisfies dA € Cy with
n=a+p3>1.

Remark 7.3. (BEYOND YOUNG) It is natural to wonder what happens in The-
orem 7.1 for (X,Y)€C®x CP with a+ 3 <1. In this case, there might be no solution

to (6.5)-(6.6), because the necessary condition (6.9) in Lemma 6.5 can fail. For a
simple example, consider X;=t* and Y; =t for t € [0, 7] and note that for s=0 and

u:% we have by (1.32)
Y@z

which is not o(t — s) =o(t) when a+ [ <1.

6 Asudl = 13441 | =[8Y,.

2
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In order to define a notion of integral I, = ng; dX, when (X,Y)€C*x C? with
a+ (<1, we need to relax condition (6.3), see Definition 8.1 below. This will lead
to the notion of Rough Paths, described in Chapter 8.

7.2. INTEGRAL FORMULATION OF YOUNG EQUATIONS

In this section we explain why we call (2.4) a Young equation. In fact, we can
interpret the finite difference equation (2.4) as an integral equation, using the Young
integral of section 7.1.

PROPOSITION 7.4. Let Z € C%([0,T); R¥) with o >%. Then Z satisfies (2.4) if and
only if
¢
Zy= Z0+/ o(Zs) dXs, telo, 7], (7.9)
0

where the integral 1s in the Young sense.

Proof. We consider the germ Ay :=0(Z;) X5, 0<s<t<T. By (7.4)
[0Asut| = |0(Zu) — 0 (Z)[|Xe = Xul = [[0A]l2a <[V ||| |0X [ |0Z]]a-

Therefore we obtain that (2.4) is equivalent to (7.5) above. O

In the case a € (%, %], this argument does not work and the Young integral is not

adapted, since the germ A,;:=0(Z,) X, has the property dA € C* with 2a < 1, so
that the Sewing Lemma can not be applied. However the equation (3.19) suggests
another germ:

Ag =0 (Z) X+ 02(Zs) X2, 0<s<t<T.

Note that A=0Z — ZBP® in the notation (3.19). Then by (3.27) we know that
dA € C3%. Therefore we can interpret the formula

57 =A— A(6A)
as

t
Zt:ZO+/a(Zs)dXS, 0<t<T,
0

which for the moment is only a notation that will be made more precise in chapter 10.

7.3. LOCAL EXISTENCE VIA CONTRACTION

As an application of the estimates on the Young integral of Theorem 7.1, we want to
give a local existence result for equation (2.4) which does not rely on compactness
and which can be therefore used also in infinite dimension.

Let Zy€ RF and X €C([0,T]; R?) be given, o: R* — R¢® (R?%)* smooth and the
unknown Z:[0,7] — RF is such that o(Z) € C* and 2a:> 1, so that the right-hand side
of (7.9) can be interpreted as a Young integral. We want now to show the following
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THEOREM 7.5. (CONTRACTION FOR YOUNG DIFFERENTIAL EQUATIONS) Let o:
RF — RF @ (RY)* be of class C* with Vo and V?o bounded. Let a € ]%, 1] and
X eC([0,T];RY) fized. It T >0 is small enough, then for any Zy€ R there exists
a unique Z € C*([0, T); R¥) which satisfies (7.9).

Proof. For all feC*([0,T];R*) we have
lo(f) = o (£ <V allcolfi = fil
so that
160 (NMa<IVallwolldfla-
By (7.7) with o= /3 we obtain for all f € C® satisfying (7.9)

10 flla<(o(fo)l + (14 Kaa) TV |locll6.f la) [0X [|a
since
lo(Nllee <lo(fo)|+T[60(f)lla-
Therefore, if T satisfies

TO‘<1 1

2 (1+ Kaa) [V [loo |0 X o

then we have the following a priori estimate on solutions to (7.9)
102 |lo < 2] (Zo) [ 1[0 X [la-

We fix such T" and we set C*(Zy) :={f €C* fo=Zo, |0 f|la <2|0(Z0)|]|0X ||} Then
we define A:C* — C® given by

A(f):=h, ht::Zo+/0ta(fs)dXs, telo, 7).

It is easy to see, arguing as above, that A acts on C*(Z), namely A:C*(Zy) — C*(Zy).
Note that the map C%(Zy) x C*(Zp) > (a,b)— ||da — db|| defines a distance on C*(Zy)
which induces the same topology as ||-||ce. We want to show that A is a contraction
for this distance if 7" is small enough. By (7.7) we have for a =g

16A(a) = 3A(D)][a <(lo(a) = a(b)lleo + Koo T [|00(a) =00 (b)[la) [|0X [|a-
ST (1 + Ksa) [|0X [|o |00 (a) = 60 ()| -

We now need to estimate [|[do(a) —do(b)||,. By Lemma 2.8

l60(a) =00 (b)]la< IV ollxllda = 0bllat][VZollo(l[dallatI0b]la) [la = bl
Since, as usual, ||a —b||co <T%||0a — 0b||4, We obtain

160(a) = 6o (b) o < (Vo oot T Vo [|oo([|6allat]|5b]))l|da — 6b]la- (7.10)
Therefore, for all a,b € C*(Zy)
16A(a) =0 AD)[la < Crllda —db]a,

where Cr:=T1 + Ka) |0 X ||la (IV 0 |l TV 20 ||t (Z0)] |6 X ||a)- It is now
enough to consider T" small enough so that C'p < 1. O
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7.4. PROPERTIES OF THE YOUNG INTEGRAL

The Young integral |, g Y dX, defined in Theorem 7.1, shares many properties with
the classical Riemann-Lebesgue integral, that we now discuss.
A elementary but useful observation is that | g Y dX is a linear function of Y (for

fixed X) and a linear function of X (for fixed Y'), by bilinearity.
For an interval [s,t] C [0,7] we will use the notation

t
It—]s::/ YdX.

If the integrand Y, = ¢ is constant for all u € [s, t], then fStYdX =c(X;— X,), which
follows directly from (7.5). As a corollary, we obtain the following useful formula
for the remainder.

LEMMA 7.6. Let (X,Y)eC*xC" for a, 3€)0,1] with a+ >1 and let [t::nguqu
be the Young integral, see Theorem 7.1. Then the remainder

Rst::]t_ls_}{s(Xt_Xs)a Ogsgth,

admits the explicit formula
t
Rst:/ (Yo—Y)dX,  0<s<t<T, (7.11)

where the right hand side is a Young integral.

Proof. By linearity and the basic property mentioned above, we obtain

t t t
/ (m—Ys)qu:/ Yuqu—/ YidX,=I,—I,~Y,(X,~ X)=Ry. O
An important property is integration by parts, which follows by the uniqueness
of the solution for the problem (6.5)-(6.6), recall Lemma 6.2.

PROPOSITION 7.7. (INTEGRATION BY PARTS) Fiz o, f € ]0,1] with o+ 3> 1. For
all (X,Y)e€Cx CP the Young integral satisfies

t t
/ Xdy + / YdX = XY, — XoYp. (7.12)
0 0

Proof. Let us set It’::f(fX dY + ng dX. By the property (7.5) we have

I —L=Y (X — X)) + X,(Vi = Yo) +o(t —s).

N

Ast

Next we set I} := X, Y; — Xy Yy and note that, by direct computation,

S N
~

S
Ast Rst
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where |Ry| <||6X||o]|0Y ||g]t — s|*"?=o0(t — s). By Lemma 6.2, for any germ A,
there can be at most one function I which satisfies §1y; = Ag + o(t — s) (6.5)-(6.6),
hence I'=1". O

We next discuss the chain rule.

PROPOSITION 7.8. (CHAIN RULE) Let X € C* with o € ]%, 1]. Let o: R— R be
differentiable with ¢’ € C7(R), for~y € ]0,1] such that >%— 1 (a sufficient condition
is that o € C*). Then ¢'(X)=¢' 0 X €C and

t
P = o(X0) = [ /3, (7113)
0
where the right hand side is a Young integral.

Proof. It is easy to see that ¢'(X) € C*?, which implies that fégp’(X) dX is well-

defined as a Young integral, since o+ oy > 1. By the definition (7.5) of the Young
integral, proving (7.13) amounts to showing that

(X)) — o(Xs) = ¢'(Xs) (Xi—X,)[ Solt —s).
By the classical Lagrange theorem, if, say, X; > X, then
P(Xi) — p(Xs) = ' (X) (Ko = Xo) = (¢(§) — ¢' (X)) (Xi = XJ)
with & € | X, Xy[. Since ¢’ €C” and X €C*, it follows that
[p(X0) = p(Xo) = (X)) (Ko = X S Xy = Xy H = o(t — 5)
since v+ 1> é > 1. This completes the proof. U

More generally, we have

COROLLARY 7.9. In the same setting of Proposition 7.8, for all s <t
t
P(Xi) = p(Xs) = @' (Xo) (Xe — Xo) +/ (¢'(Xr) — ¢'(Xy)) dX,.. (7.14)

Proof. It is enough to note that, by (7.13),
t
P —o(X) = [ (X)X,

t
= XX =X+ [ (P00) ~ X)) A,
where all integrals are in the Young sense. U

In particular, for X € C* with a > %, we have

2 2 t
X XXX+ / (X, — X,)dX,, (7.15)
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which can be rewritten as follows:

t 2 2
[

X, (X, — X.) :(Xt_TXS)Z. (7.16)

7.5. MORE ON HOLDER SPACES

We discuss further properties of the Hélder spaces C* for o € (0,1) (excluding the
case =1 of Lipschitz functions). These will be useful in the next Section 7.6, when
we discuss the uniqueness of the Young integral.

Let us denote by C the space of infinitely differentiable functions. We note
that C° C C* for every o€ (0, 1), but C* is not dense in C*.

THEOREM 7.10. For any a € (0,1), the closure of C™ in C* is the subset C§ defined by

Co ={f:[0,T]—=R: [f(t)— f(s)|=o(|t — s|*) uniformly as |t —s| —0}.

Remark 7.11. Note that f (g if and only if
Ve>0 30.>0: [ f(t)— f(s)| <e|t—s|* for |t —s| <6, (7.17)

which implies (exercise) that C' C C§ C C* for a € (0,1). It follows that the closure
of C1in C® is again C§, simply because C* c C*C C§.

Exercise 7.1. Prove that C' C C§ and C§ C C® for a € (0,1) (inclusions are strict).

We stress that the subset Cf is strictly included in C%, but what is left out is not
so large, in the following sense.

Exercise 7.2. Prove that C®" C C§ for 0 < a < a’< 1 (the inclusion is strict).

The proof of Theorem 7.10, which we defer to Section 7.7, is based on the
following classical approximation result (also proved in Section 7.7).

LEMMA 7.12. For any continuous f:[0,T] — R there is a sequence f, € C™ such
that || fn — flloo— 0. One can take f, with the same modulus of continuity as f, in
the following sense: given an arbitrary function h(-),

if ()= f(s)|<h(t—s)  Vs,t€[0,T],

then | fa(t) = fa(s)| <h(t—s) Vs, t€[0,T], VYneN. (7.18)

It follows that ||0fulla <||0f |la for alln €N and o € (0, 1).

Remark 7.13. Lemma 7.12 holds with no change for functions f:[0,7]— R, where

R is an arbitrary Banach space. One only needs a notion of integral | OT fsds when
f is continuous, and for this one can take the Riemann integral, i.e. the limit of
Riemann sums ). f(t;)(ti11 — ;) along partitions (z;) of [0, 7] with vanishing mesh
max; |t;+1 —t;| — 0 (one can check that such Riemann sums form a Cauchy family).
This integral satisfies the key usual properties: f fOT fsds is linear, |[ (;‘F fsds| <

S £l ds and [} flds= fr— fo.
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7.6. UNIQUENESS OF THE YOUNG INTEGRAL

Throughout this section we denote by I,°"™ the Young integral I, = i) (f Y dX built
in Theorem 7.1. We want to compare it with the classical integral

t
Lg:lassmal . :/ %Xu du
0

which is defined for continuous Y and continuously differentiable X € C*.

We remarked in (6.2)-(6.3) that I§#ssi<al satisfies property (7.5), therefore If'assical
coincides with 1™ when (X,Y) € C* x C?, for any 3€]0,1]. In other terms, the
Young integral is an extension of the classical integral.

We can be more precise: by Theorem 7.1, for «, 5 €]0, 1] with a + 3> 1, the
Young integral IYus = (I;°""),c(; 7y is a continuous bilinear map from C® x C¥ to
C®. This means that 1Yo"8 is a continuous extension of the classical integral [¢lassical
defined on C' x CP. It would be tempting to state that it is the unique continuous
extension, but this is not true, because C' C C® is not dense in C* (see Theorem 7.10
and Remark 7.11).

Interestingly, it is possible to characterize the Young integral as the unique
continuous extension of I°@sical if we let the exponent o vary. Given a €0, 1], we

define the space
C~%:= U c”
]

a€la,l

and we agree that f, — f in C>® if and only if f, — f in C* for some o > &. The
basic observation is that C! is dense in C>%: for any f € C>% we can find a sequence
fn€C" such that f, — f in C>2.71

If we fix @=1— 8, for 3€]0,1], the Young integral 1Yo"e = (I}°"%), 1 7 is a
continuous map from C>1=%) x CP to >~ by Theorem 7.1.

These observations yield immediately the following result.

PROPOSITION 7.14. (CHARACTERIZATION OF THE YOUNG INTEGRAL, 1) Fiz any
B3 €10,1]. TheYoung integral YO8 = (Ifoung)te[oj], viewed as a map from C~1=P) x

CP to C>1=P) s the unique continuous extension of the classical integral 1925 =

(Ifessicaly, 0.7 defined on C x CP.
Explicitly, 1Y°™ is the unique map I:C>0=% x €% — > such that:

° It:IEIaSSicalznguXudu for X e Ct;

o if (X,,Y,) —(X,Y) in C*xCP for some a>1— 3, then we have the con-
vergence 1(X,,Y,) — 1(X,Y) in C*" for some o' >1— 3.

Alternatively, we can characterize the Young integral as the unique continuous
extension of the classical integral on C® x C? for fixed «, provided we consider a
weaker notion of convergence on C®.

7.1. If f€ C* with a> @, by Exercise 7.2 we have f € C§' for any o’ €]a, af, then by Theorem 7.10
we can find f,, € C* such that f, — f in C®, hence f, — f in C>%.
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DEFINITION 7.15. Fiz o €]0,1]. Given f,, f:[0,T] = R, with n € N, we write

fo~af — | frn— fllo—0 and sug 10 frlla < o0 (7.19)
ne

In other terms, fn,~>o f if and only if f,— f in the sup-norm and, moreover, the
sequence f, is bounded in C*.

We leave it as an exercise to check some basic properties.
Exercise 7.3. Fix a €]0,1] and let f,, f:[0,7] — R, with n € N. Prove the following.
1. If fn~~a f, then f€C% more precisely ||6f]|a < supnen || fnlla < oo.
2. If fn~=q f, then f,— f in C for any o’ < o, but not necessarily f,, — f in C°.
3. If f,~q4f and p: R — 1R is Lipschitz, then ¢(f) ~ap(f).
4

. In the definition (7.19) of f, ~», f, the uniform convergence || f,, — f|lcc — 0 can be
replaced by pointwise convergence: f,(t) — f(t) for every ¢t €[0,T].

We can now provide the following characterization of the Young integral.

THEOREM 7.16. (CHARACTERIZATION OF THE YOUNG INTEGRAL, II) Fiz «,
B €10,1] with a+ 3>1. The Young integral I8 = (ItYoung)te[QT] is the unique map
I:C* x CP— C“ such that:

1. L= Il = (1Y, X, du for X € C';
2. if Xpy~a X and Y, ~3Y, we have I(X,,,Y,) ~o [(X,Y).
Proof. We already know that the Young integral Yo" satisfies property 1. Let

us show that it also satisfies property 2: given X,, ~», X and Y,,~3Y, we need to
prove that

TYoums( XY, ~og [YOU8(X ) Y) (7.20)
Let us fix o’ < a, ' < ( such that we still have o'+ 3’ >1. We know by Exercise
7.3 that X,, — X in C* and Y, —Y in C?". Since the Young integral is a continuous

bilinear operator 1Yo"e; C*' x €% — C?' we have the convergence I°"8(X,,,Y,) —
IYowe( X Y) in C*', which implies

||IYoung(Xm Y;l) _ IYoung(X’ Y)Hoo —0.
To prove (7.20), it remains to observe that, by (7.7),

sup [ XUE( Xy, Yo) o < sup ([Yalloo + Kot g T |0Y0]|5)|| Xnlla < 00

We next consider an operator I:C® x C® — C* which satisfies properties 1 and 2
and we show that it must coincide with the Young integral Yo"*¢, Given X € C® and
Y € CP, by Lemma 7.12 we can construct a sequence (X,,) C C! with || X,, — X ||cc — 0
and || X,|la <||X||a- By property 2 we have I(X,,,Y) ~,[(X,Y) and IY°""8(X,,
Y) ~s 1Y0U8( X Y'), which implies pointwise convergence: for any t € [0, 7]

L(X,Y)=lim[(X,,Y) and  I(X,Y)=lim "X, Y).
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By property 1 we have I,(X,,,Y)=1"""%(X,,Y) for any n, hence
LIX,Y)=I""8X,Y) Vtelo,T],
which completes the proof. 0

7.7. TWO TECHNICAL PROOFS
We give here the proof of Theorem 7.10 and Lemma 7.12.

Proof of Lemma 7.12. We extend f:[0,7]—>R to a function defined on the whole
real line, by setting f(t) = f(0) for t <0 and f(t)= f(T) for t >T.

Let us fix a C* function ¢: R — R supported in [—1, 1] with unit integral:
Jpw(u)du=1. Note that ¢,(t) :=np(nt) is supported in [—%, %} and also has unit
integral: [, ¢n(u)du=1. We then define f, = @, * f, that is

fn(t):zégpn(t—u) f(u)du.

It is a classical result that f, € C*> (we can differentiate inside the integral by
dominated convergence, since f is bounded).
We next write

fn(t)Z/Rson(u) flt—u) du:/

R

v
o(v) f(t - ﬁ) dv,
which implies || f, — f |loc < SUpser, juj<1 | f(t — %) — f(t)| (since ¢ has unit integral),
hence || f, — |0 — 00. Property (7.18) is also directly checked. O

Proof of Theorem 7.10. First we show that C§ is closed in C*: given f,, in C§ and
f €C® such that || f, — f]la — 0, we need to show that f€Cg, that is (7.17) holds.
For s <t and n € N we can write, by the triangle inequality,

Lf(t) — f(s)] [ fn(t) = fn(s)]
WS 10f =6 fulla+ G—s)7 (7.21)
Fix n =, such that [|§fs, —df |« <5. Since fs €C§, by (7.17) we can fix d. >0 such
that for [t —s| < the last term in (7.21) is <5 and we are done.

It remains to show that, for any f € Cg, there is a sequence f, € C*° such
that || fn— flleo + |0fn — 0f|la = O (recall Remark 1.4). We define f, € C* as in
Lemma 7.12; so we only need to show that ||df, —0f||o— 0.

Since f €C§, property (7.17) holds. The same property holds replacing for f,,
uniformly for n € N, thanks to relation (7.18). This means that for any € > 0, for all
0<s<t<T with |t — s| <0, and for any n € N, we can write

|(fr = F)E) = (fn= )]  [fnlt) = fuls)] | L) = F(5)]
(t—s) = (t—s) (t—s)

If we fix i > 0 such that || f, — f|lec <€ (0¢)* for all n > 7, for |t —s| >0, we get

(= DO = (fa= HE] _ 2o I
9" AT

<2e.




7.7 TWO TECHNICAL PROOFS 109

Altogether, the previous relations show that ||0f,, — 6 f ||« < 2€ for n > .. This implies
that ||0f, —f|a— 0. O



