
Chapter 8
Rough paths

We have seen in Chapter 3 that it is possible to build a robust theory for a controlled
equation of the form Ẏt= σ(Yt) Ẋt with X: [0, T ]→Rd of class Cα for α ∈

( 1
3
, 1
2

]
,

provided we choose a function X2: [0, T ]!2 →Rd⊗Rd satisfying for 0! s!u! t!T

δXsut
2 =Xsu

1 ⊗Xut
1 , |Xst

2 |" |t− s|2α,
see (3.13), where we denote Xst

1 := δXst, 0! s! t! T . In coordinates, the former
identity means

(δX2)sut
ij = δXsu

i δXut
j , |(Xst

2 )ij |" |t− s|2α, i, j ∈ {1, . . . , d}. (8.1)

In Section 3.2 we left the problem of the existence of such a function X2 open.
We recall that, for X of class C1, we have a natural choice for X2 given by

(Xst
2 )ij :=

∫

s

t

(Xr
i−Xs

i) Ẋr
j dr, 0! s! t!T ,

see (3.9). In Lemma 7.6 we saw that, for α> 1

2
and X ∈Cα([0, T ];Rd), the (uniquely

defined) Young integral It
ij :=

∫
0

t
X i dX j satisfies

Rst
ij := It

ij− Isij−Xs
i (Xt

j−Xs
j)=

∫

s

t

(Xr
i−Xs

i) dXr
j , |Rst

ij |" |t− s|2α,

where the integral in the right-hand side is again of the Young type and 2α> 1.
There is a clear resemblance between the two last expressions, and indeed for

α> 1

2
we show in Lemma 8.14 below that setting (Xst

2 )ij :=Rst
ij we obtain (8.1) and

this is the only possible choice.
If now α! 1

2
, neither of these formulae is well-defined, because for 2α! 1 we are

not in the setting of the Young integral. However, we have seen in Chapter 3 that
the bound |Xst

2 |" |t− s|2α is enough for the whole theory of existence, uniqueness
and stability of the rough equation (3.19) to work, even if 2α! 1.

This suggests that, for every i, j ∈ {1, . . . , d}, the function (Xst
2 )ij can be inter-

preted as the remainder Rij associated with an integral I ij of (X i, X j), where we
weaken our requirements with respect to the Young integral, namely we only require
that

It
ij− Isij−Xs

i (Xt
j−Xs

j)= (Xst
2 )ij , |(Xst

2 )ij |" |t− s|2α,

and now 2α! 1. Therefore the choice of the rough path X= (X1,X2) over X is
equivalent to the choice of a generalised integral I=

∫
0

·
X ⊗dX ∈Cα([0, T ];Rd⊗Rd),

and in this case X2 plays the role of a generalised remainder with respect to the
germ (s, t) %→Xs⊗ (Xt−Xs).

In this chapter we explore these notions and explain them in greater detail.
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8.1. Integral beyond Young

Let us fix (X, Y )∈ Cα× Cβ. We saw in Theorem 7.3 that when α+ β > 1 we can
define the integral It=

∫
0

t
Y dX as the unique function which solves

I0=0 , δIst=Ys δXst+Rst, Rst= o(t− s) . (8.2)

This was based on the observation that for the germ Ast :=Ys δXst we have

δAsut=−δYsu δXut =⇒ ∥δA∥α+β! ∥δX∥α∥δY ∥β .

Therefore if η := α+ β > 1 we have ∥δA∥η <∞, i.e. the germ A is coherent, see
Definition 6.7, and the Sewing Lemma can be applied, see Theorem 6.8.

We now focus on the regime α+ β! 1. As we have already seen in (7.8) above,
there exist germs A which allow no function I solving ( 8.2). Indeed, we recall
that choosing Xt= tα and Yt= tβ, t ∈ [0, T ], then the germ Ast := Ys δXst satisfies
|δA0

t

2
t|# tα+β, see (7.8), and therefore the necessary condition (6.9) in Lemma 6.5

is not satisfied.
A solution is to relax the requirement Rst= o(t− s) in (8.2), say to

∃η! 1: |Rst|" |t− s|η. (8.3)

Arguing as in Lemma 6.5, this would imply

|δRsut|" |t− s|η+ |u− s|η+ |t−u|η" |u− s|η+ |t−u|η

since η ! 1. On the other hand, by Proposition 6.4 we have |δRsut| = |δAsut| "
|u− s|β |t− u|α. Choosing |u− s|= |t− u| shows that the best we can hope for in
(8.3) is η=α+ β.

Summarizing, given (X, Y ) ∈ Cα× Cβ with α+ β ! 1, it is natural to wonder
whether there exists a function I which satisfies the following weakening of (8.2)

I0=0 , δIst=Ys δXst+Rst , |Rst|" |t− s|α+β . (8.4)

This would provide a “generalised notion of integral”
∫
0

·
Y dX . This justifies the

following

Definition 8.1. Fix α, β ∈ (0, 1) with α+ β! 1. Given (X, Y )∈ Cα× Cβ, if there
exists a function I : [0, T ]→R which satisfies

It− Is=Ys (Xt−Xs)+O(|t− s|α+β) uniformly as |t− s|→ 0, (8.5)

we say that I is a generalised integral of Y in dX.

We stress that this new definition of integral extends the previous one (8.2) for
(X,Y )∈Cα× Cβ with α+ β> 1, because the term o(t− s) is actually O(|t− s|α+β)
in this case, by the key estimate for the Young integral (or, equivalently, for the
sewing map).

On the positive side, there is always existence for ( 8.4) if α+ β < 1. This is a
non-trivial result, due (in a more general setting) to Lyons and Victoir. We state
this as a separate result, which is a consequence of Proposition 8.5 below.
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Lemma 8.2. Let (X, Y )∈ Cα× Cβ with α+ β < 1. There exists (I , R)∈ Cα×C2α+β
satisfying ( 8.4).

Remark 8.3. It is an easy observation that uniqueness can not hold for ( 8.4).
Indeed, given I which solves (8.4), any function of the form It

′ := It+ ht− h0 with
h∈Cα+β still solves (8.4). As a matter of fact, all solutions are of this form, because
given two solutions I , I ′ of (8.4), with corresponding R,R ′, their difference h :=I ′−I
must satisfy |δhst|= |Rst

′ −Rst|" |t− s|α+β.

Remark 8.4. An integral I as in Definition 8.1 is necessarily of class Cα by (8.5).

We state now a result which implies Lemma 8.2 above.

Proposition 8.5. (Paraintegral) Fix α, β ∈ (0,1) with α+ β<1. There exists
a (non unique) bilinear and continuous map J≺: Cα× Cβ→C2

α+β such that

∥J≺(X,Y )∥α+β!C ∥δX∥α ∥δY ∥β , (8.6)

for a suitable C=C(α, β , T ), with the property that, for all s<u< t,

δJ≺(X,Y )sut= δYsu δXut . (8.7)

The proof of Proposition 8.5 is postponed to Section 8.9 below.

Remark 8.6. Let α, β ∈ (0, 1) with α+ β! 1. Finding a generalised integral of Y
in dX for (X, Y )∈ Cα× Cβ as in Definition 8.1 is equivalent to finding Rst∈C2α+β
such that

δRsut= δYsu δXut , (8.8)
R∈C2α+β . (8.9)

Indeed, if we define Ast := Ys δXst, relation (8.8) implies that δ(A+R) = 0, hence
there exists I : [0, T ]→R which satisfies δI =A+R, which is exactly relation (8.5).

By Proposition 8.5 and Remark 8.6, if α, β ∈ (0, 1) and α + β < 1, any (X,
Y )∈ Cα× Cβ admits an integral I as in Definition 8.1.

8.2. A negative result

We show that the usual integral I(f , g)=
∫
0

t
fsgs

′ ds, when g∈C1, cannot be extended
to a continuous operator on Cα′× Cβ ′, when α ′+ β ′< 1.

Lemma 8.7. Set [0, T ] = [0, 1] and define, for α, β ∈ (0, 1),

fn(t) :=
1
nα

cos (nt) , gn(t) :=
1
nβ

sin (nt) .

Then fn$α 0 and gn$β 0 (recall Definition 7.15), more precisely:

∥fn∥∞→ 0 , ∥δfn∥α! 2 ; ∥gn∥∞→ 0 , ∥δgn∥β! 2 . (8.10)
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(In particular, fn→ 0 in Cα′ and gn→ 0 in Cβ ′ for any α ′<α and β ′< β.)
However, if we fix α+ β! 1, we have I(fn, gn)→ 0, because

∀t∈ [0, 1]: lim
n→∞

I(fn, gn)t=

⎧
⎪⎪⎨

⎪⎪⎩

+∞ if α+ β< 1
1

2
t if α+ β=1

0 if α+ β> 1

.

Proof. Note that ∥fn∥∞=n−α and ∥fn′∥∞=n1−α, hence

|fnt− fns|!min {∥fn′∥∞|t− s|, 2 ∥fn∥∞}!min {n1−α|t− s|, 2 n−α} .

Since min {x, y}!xγ y1−γ, for any γ ∈ [0, 1], choosing γ=α we obtain

|fn(t)− fn(s)|! 21−α |t− s|α ,
hence ∥δfn∥α! 21−α! 2. Similar arguments apply to gn, proving (8.10).

Next we observe that 1

2π

∫
0

2πcos2(x) dx= 1

2π

∫
0

2π sin2(x) dx= 1

2
. Then, for fixed

t > 0, as n→∞
∫

0

nt

cos2(x) dx=
∫

0

2π⌊nt
2π
⌋
cos2(x) dx+O(1)=

1
2
2π
⌊ nt
2π

⌋
+O(1)=

t
2
n+O(1) .

It follows that

I(fn, gn)t=
n

nα+β

∫

0

t

cos2(ns) ds= 1
nα+β

∫

0

nt

cos2(x) dx∼ t
2
n1−(α+β) . %

8.3. A choice
We have seen in (7.11) above that, given (X,Y )∈ Cα× Cβ with α+ β> 1, we have
an explicit formula for the remainder Rst= It− Is−Ys (Xt−Xs), given by

Rst=

∫

s

t

(Yu−Ys) dXu, 0! s! t!T , (8.11)

where It=
∫
0

t
YudXu is the unique function given by the Young integral of Theorem

7.1. Moreover Rst=
∫
s

t
(Yu−Ys) dXu is the unique function in C2 which satisfies

R∈C2α+β , δRsut= δYsu δXut, 0! s!u! t!T . (8.12)

In the regime α+ β<1, the Young integral is not available anymore. However by
Proposition 8.5 we know that we can find an integral I ∈Cα in the sense of Definition
8.1 by setting

δIst :=Ys (Xt−Xs)− J≺(X,Y )st,

where J≺ is the paraintegral of Proposition 8.5, see also Remark 8.6. This shows that,
in this setting, the remainder Rst= It− Is−Ys (Xt−Xs) is not given by an explicit
formula like (8.11) (which is now ill-defined), rather we have

R=−J≺(X,Y ).
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However formula (8.11) suggests that we can define
∫

s

t

(Yu−Ys) dXu :=Rst=−J≺(X,Y )st, 0! s! t!T . (8.13)

In other words, the left hand side of (8.13) is chosen to be equal to the remainder
R associated with the integral I as in (8.4). We recall that R=−J≺(X,Y ) satisfies

R∈C2α+β , δRsut= δYsu δXut, 0! s!u! t!T . (8.14)

The difference between formula (8.14) and formula (8.12), is that in the former
α+ β< 1 while in the latter α+ β> 1. Accordingly, in (8.14) the function R is not
uniquely determined, while in (8.12) it is.

The comparison between formula (8.14) and formula (8.12), and the explicit
expression (8.11) in the case α+ β> 1 show that (8.13) is a reasonable definition of
the function (s, t) %→

∫
s

t
(Yu−Ys) dXu in the setting α+ β! 1.

We also stress that R in (8.14) can not be uniquely determined . Indeed, by
Remark 8.3, we have infinitely many possible choices given by

R ′=R+ δh, h∈ Cα+β , h0=0. (8.15)

Remark 8.8. In the special case X =Y and α= β! 1

2
, (8.4) becomes

I0=0 , δIst=Xs δXst+Rst , |Rst|" |t− s|2α . (8.16)

Now the germ is Ast=Xs(Xt−Xs) and we have a simple canonical solution which
does not rely on the paraintegral and is given by

It :=
1
2
(Xt

2−X0
2), Rst :=

1
2
(Xt−Xs)2,

since
1
2
(Xt

2−Xs
2)

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
It−Is

=Xs(Xt−Xs)︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Ast

+
1
2
(Xt−Xs)2

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Rst

.

As we have seen in (7.15)-(7.16), if α> 1

2
then (I , R) is the only solution of (8.16)

and moreover

Rst=

∫

s

t

(Xr−Xs)dXr

where the integral is in the Young sense. If α! 1

2
, then we have infinitely many

possible solutions (I ′, R ′).

8.4. One-dimensional rough paths
We have seen at the beginning of this chapter that for every i, j ∈ {1, . . . , d}, the
function (Xst

2 )ij plays the role of the remainder Rij associated with a generalised
integral I ij of (X i,X j) in the sense of Definition 8.1 with α= β< 1

2
: in other words

the choice of X2 is equivalent to the choice of integrals (in the sense of Definition
8.1) I ij ∈ Cα for all i, j ∈ {1, . . . , d}, such that

I0
ij=0 , δIst

ij=Xs
i δXst

j +(Xst
2 )ij , |(Xst

2 )ij |" |t− s|2α ,
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or, in more compact notations,

I0=0 , δIst=Xs⊗Xst
1 +Xst

2 , |Xst
2 |" |t− s|2α . (8.17)

Existence of X2 satisfying (8.17) with α< 1

2
is therefore granted by Lemma 8.2, e.g.

via the paraintegral of Theorem 8.5. We also know that in the regime α< 1

2
we have

infinitely many possible choices for (I ,X2), all of the form (8.15) above.
Suppose first that we are in the setting d=1. Then Definition 3.2 becomes

Definition 8.9. Let α∈ ]1
3
, 1
2
] and X : [0, T ]→R of class Cα. A α-Rough Path over

X is a pair X=(X1,X2)∈C2α×C22α such that

Xst
1 =Xt−Xs, δXsut

2 =Xsu
1 Xut

1 . (8.18)

We recall that the conditions X ∈Cα and X1= δX ∈C2
α are equivalent, and that

(X1,X2)∈C2α×C22α is equivalent to

|Xst
1 |" |t− s|α, |Xst

2 |" |t− s|2α.

We have seen in Chapter 3 that it is possible to build an integration theory for every
choice of the α-rough path X over X . In this theory we can recover existence and
uniqueness of the integral function

∫
0

·
Y dX for a large class of choices of Y . For

this we have to give very different roles to the integrator X and to the integrand Y ,
whereas in the case of the Young integral the two functions play a symmetric role:
X will be a component of a rough path and Y a component of a controlled path, see
Chapter 10.

We note that the algebraic condition δXsut
2 =Xsu

1 Xut
1 is non-linear , which implies

that α-rough paths do not form a vector subspace of C2
α×C22α.

For all α∈
( 1
3
, 1
2

]
, given any real-valued path X ∈ Cα([0, T ];R), there is always

a rough path lying above X. Indeed, It :=
1

2
Xt

2 is a generalised integral of X in dX
integral in the sense of Definition 8.1, because

δIst=
1
2
(Xt

2−Xs
2)=Xs δXst+

1
2
(δXst)2=Xs δXst+O(|t− s|2α) .

Then, by Remark 8.8, we can define a rough path X by setting

Xst
2 =

1
2
(δXst)2 . (8.19)

More directly, note that (8.19) satisfies the Chen relation (8.21), and clearly X2∈
C2
2α.

8.5. The vector case

Let us consider now a vector valued path X: [0, T ]→Rd, with Xt=(Xt
1, . . . ,Xt

d). We
suppose that X is of class Cα, namely that X i∈ Cα for all i=1, . . . , d, with α> 1

3
.
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We can now generalise Definition 8.9 to the vector case. The multi-dimensional
case d≥ 2 is sensibly richer, because off-diagonal terms

∫
X i dX j with i=/ j do not

have explicit candidates as in (8.19).

Definition 8.10. Let α∈ ]1
3
, 1
2
], d≥ 1 and X: [0, T ]→Rd of class Cα. A α-Rough

Path on Rd over X is a pair X=(X1,X2), with

• X1=(δX i)i=1, . . . ,d∈C2α([0, T ];Rd)

• X2=(Rij)i,j=1, . . . ,d∈C22α([0, T ]!2 ;Rd⊗Rd)

such that

(δXsut
2 )ij=(Xsu

1 )i (Xut
1 )j , (8.20)

or equivalently

Xst
2 −Xsu

2 −Xut
2 =Xsu

1 ⊗Xut
1 . (8.21)

We denote by Rα,d the space of α-rough paths on Rd and by Rα,d(X) the set of α-
rough paths over X.

The condition (8.20)-(8.21) is the celebrated Chen relation. As in the one-dimen-
sional case, existence of X2 satisfying (8.20)-(8.21) with α< 1

2
is therefore granted

by Lemma 8.2, e.g. via the paraintegral of Theorem 8.5. We also know that in the
regime α< 1

2
we have infinitely many possible choices for (I ,X2), all of the form

(8.15) above.
We are going to see in Chapter 10 that it is possible to build an integration theory

for every choice of an α-rough path X. Again, we note that the condition (8.20)-
(8.21) is non-linear , which implies that α-rough paths do not form a vector space.

The following exercise is a simple summary of the discussion at the beginning of
this chapter.

Exercise 8.1. Given a α-rough path X= (X1,X2) over X in Rd, a process I ∈ Cα([0, T ];
Rd⊗Rd) satisfying (8.17) is a generalised integral of X in dX in the sense of Definition 8.1.

Viceversa, given X ∈ Cα([0, T ];Rd) and an integral I ∈ Cα([0, T ];Rd⊗Rd) of X in dX, in
the sense of Definition 8.1, defining X2 by (8.17) we obtain a α-rough path X=(X1,X2) over
X in Rd.

In the multi-dimensional caseX ∈Cα([0,T ];Rd) with d≥2, building a rough path
over X is non-trivial, because one has to define off-diagonal integrals

∫
X i dX j for

i=/ j. However, by the results we have proved on the existence of the paraintegral
in Proposition 8.5, we can easily deduce the following.

Proposition 8.11. For any d∈N, α∈ (1
3
, 1
2
) and X ∈ Cα([0, T ];Rd), there is a α-

rough path X which lies above X (hence, by Lemma 8.15, there are infinitely many
of them).

Proof. For any fixed i, j ∈ {1, . . . , d}, let I ij be a generalised integral of X i in dX j

in the sense of Definition 8.1, whose existence is guaranteed by the paraintegral of
Proposition 8.5. Then, by Exercise 8.1, definingX2 by (8.17) we obtain a rough path
X which lies above X. %
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We conclude with an elementary observation, that will be useful later. By Exer-
cise 8.1, any α-rough path X over X ∈Cα([0, T ];Rd) determines an integral I of (X,
X), given by (8.17). Applying the latter relation in a telescopic fashion, we can write

It=
∑

[ti,ti+1]∈P
(Xti δXtiti+1+Xtiti+1

2 ) , (8.22)

where P = {0= t0< t1< . . . < tk= t} is an arbitrary partition of [0, t]. We will see
in Chapter 10 below that a generalization of (8.22), when we also take the limit of
vanishing mesh |P |→ 0, is the correct recipe for building “Riemann-sums”, in order
to define a generalised integral of h in dX in the sense of Definition 8.1 for a wide
class of functions h.

8.6. Distance on rough paths

We denote by Rα,d the set of all α-rough paths in Rd. For X=(X1,X2)∈Rα,d we set

∥X∥Rα,d := ∥X1∥α+ ∥X2∥2α= sup
0≤s<t≤T

|Xst
1 |

|t− s|α + sup
0≤s<t≤T

|Xst
2 |

|t− s|2α . (8.23)

We stress that Rα,d is not a vector space, because the Chen relation (8.21) is not
linear. However, it is meaningful to define for X, X̄∈Rα,d

dRα,d(X, X̄): =∥X1− X̄1∥α+ ∥X2− X̄2∥2α . (8.24)

Exercise 8.2. dRα,d is a distance on Rα,d.

When we talk of convergence in Rα,d, we mean with respect to the distance
dRα,d. Note that dRα,d is equal on Rα,d to the distance induced by the natural norm
∥F ∥α+ ∥G∥2α for (F , G)∈C2α×C2

2α. In particular Xn= (Xn
1,Xn

2)→X= (X1,X2)
in Rα,d if and only if Xn

1→X1 in C2α and Xn
2→X2 in C22α.

Lemma 8.12. The metric space (Rα,d, dRα,d) is complete.

Proof. Let (Xn)n∈N⊂Rα,d be a Cauchy sequence. Then, by definition of dRα,d, for
every ϵ> 0 there is n̄ϵ<∞ such that for all n,m≥ n̄ϵ and 0≤ s< t≤T

|Xn
1(s, t)−Xm

1 (s, t)|≤ ϵ|t− s|α , |Xn
2(s, t)−Xm

2 (s, t)|≤ ϵ|t− s|2α . (8.25)

Note that

dRα,d(X, X̄)≥
∥X1− X̄1∥∞

T α
+
∥X2− X̄2∥∞

T 2α
.

It follows that the sequences of continuous functions (Xn
1)n∈N and (Xn

2)n∈N are
Cauchy in the sup-norm, hence there are continuous functions X1 and X2 such that
∥Xn

1−X1∥∞→0 and ∥Xn
2−X2∥∞→0. In particular, we have pointwise convergence

Xm
1 (s, t)→X1(s, t) and Xm

2 (s, t)→X2(s, t) as m→∞. Taking this limit in (8.25)
shows that dRα,d(Xn,X)≤ 2ϵ for all n≥ n̄ϵ. %
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This allows to rephrase the continuity result of section 3.7. We fix

D≥∥∇σ∥∞+ ∥∇2σ∥∞+ ∥∇3σ∥∞+ ∥∇σ2∥∞+ ∥∇2σ2∥∞.

We obtain from Proposition 3.11

Proposition 8.13. We suppose that α∈
( 1
3
, 1
2

]
and σ:Rk→Rk⊗ (Rd)∗ is of class

C3, with ∥∇σ∥∞+∥∇2σ∥∞+∥∇3σ∥∞+∥∇σ2∥∞+∥∇2σ2∥∞<+∞ (without bound-
edness assumptions on σ and σ2). For X ∈Rα,d and Z0 ∈Rk we denote by Z:
[0, T ]→Rk the unique solution to equation ( 3.19)

Zst
[3]= o(t− s), Zst

[3]= δZst− σ(Zs)Xst
1 −σ2(Zs)Xst

2 ,

Then the map Rk×Rα,d∋ (Z0,X) %→Z ∈ Cα is locally Lipschitz continuous.

8.7. Canonical rough paths for α> 1
2

Let 1

3
<α ′! 1

2
<α<1. Then it is well known that Cα⊂Cα′. Therefore, if X ∈Cα([0,T ];

Rd) we have in particular X ∈ Cα′([0, T ];Rd) and therefore there is a α ′-rough path
X over X. However, is there a α-rough path over X? Note that we have restricted
Definition 8.10 to the range α∈

( 1
3
, 1
2

]
, while here we are discussing the existence of

X2: [0, T ]!2 →Rd⊗Rd satisfying the Chen relation (8.21) and

|Xst
2 |" |t− s|2α

where now α> 1

2
.

Lemma 8.14. Let α ∈
( 1
2
, 1
]
. For every X ∈ Cα([0, T ];Rd), there is a unique X2:

[0, T ]!2 →Rd⊗Rd satisfying the Chen relation ( 8.21) and such that X2∈C22α. We
have the explicit formula

Xst
2 =

∫

s

t

Xsu
1 ⊗dXu, Xst

1 = δXst, 0! s! t!T , (8.26)

where the integral is in the Young sense. Moreover the map Cα∋X %→X2∈C22α is
continuous (in particular, locally Lipschitz-continuous).

Proof. It is easy to check that X2 in (8.26) satisfies the Chen relation (8.18), thanks
to the bi-linearity of the Young integral. Indeed, we can rewrite (8.26) as

Xst
2 =

∫

s

t

Xu⊗dXu−Xs⊗ (Xt−Xs) , (8.27)

hence for s!u! t we have that

(δX2)sut = −Xs⊗ (Xt−Xs)+Xs⊗ (Xu−Xs)+Xu⊗ (Xt−Xu)

= −Xs⊗ (Xt−Xu)+Xu⊗ (Xt−Xu)

= δXsu⊗ δXut .
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We show now that X2∈C22α. We recall that the Young integral satisfies the following
key estimate, for f ∈ Cα and g ∈ Cβ with α+ β> 1:

∣∣∣∣∣∣∣∣
∫

s

t

f dg− fs (gt− gs)

∣∣∣∣∣∣∣∣!cα+β |t− s|α+β .

Choosing f =X i and g=X j shows that X2, given by (8.27), is O(|t−s|2α). Finally,
we prove the continuity of Cα∋X %→X2∈C22α. Given X, X̄ ∈ Cα and the respective
X2, X̄2∈C22α, we have

Xst
2 − X̄st

2 =

∫

s

t

(Xsu
1 − X̄su

1 )⊗dXu+

∫

s

t

X̄su
1 ⊗d(X − X̄)u,

with all integrals in the Young sense. Then by the Sewing Lemma

∥X2− X̄2∥2α ! K2α(∥δX∥α+ ∥δX̄∥α)∥δX − δX̄∥α.

The proof is complete. %

Therefore, we could extend Definition 8.10 to α-rough paths for α∈
( 1
3
, 1
]
. For

α∈
( 1
2
, 1
]
and X ∈ Cα([0, T ];Rd) there is a unique α-rough path over X, which we

call the canonical rough path over X.
While for α> 1

2
there is a unique rough path lying above a given path X ∈ Cα,

for α! 1

2
there are infinitely many of them, that can be characterized explicitly.

Lemma 8.15. Let X= (X1,X2) be a α-rough path in Rd, with α ∈
( 1
3
, 1
2

]
. Then

X̄= (X1, X̄2) is a α-rough path if and only if for some f ∈ C2α([0, T ];Rd⊗Rd) one
has X̄2=X2+ δf, that is

X̄st
2 =Xst

2 + ft− fs, 0! s! t!T .

Proof. By assumption X2 and X̄2 satisfy the Chen relation (8.21). If X̄2=X2+ δf
then X2∈C22α if and only if δX2= δX̄2 and X̄2∈C22α. Therefore, if X is a α-rough
path then so is X̄.

Viceversa, if X̄ is a α-rough path, then δX2= δX̄2 because both X and X̄ satisfy
the Chen relation (8.21) with the same X1, hence X̄2=X2+ δf for some f . Since
both X2, X̄2 belong to C22α, then also δf ∈C22α, which is the same as f ∈ C2α. %

Remark 8.16. We mainly work with α-Hölder rough pats for α∈ (1
3
, 1
2
), excluding

the boundary case α= 1

2
for technical reasons. Let us stress that, by doing so, we are

not throwing away any rough paths, but only giving up a tiny amount of regularity ,
because any 1

2
-rough path is a α-rough path, for any α< 1

2
.

To summarize, the situation is the following:

1. For α∈
( 1
2
, 1
]
and X ∈ Cα([0, T ];Rd) there is a unique α-rough path over X

2. For α∈
( 1
3
, 1
2

)
and X ∈Cα([0, T ];Rd), there are infinitely many α-rough paths

over X
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3. For α= 1

2
, either there is no α-rough path over X , or there are infinitely many

of them.

In the range α ∈
( 1
2
, 1
]
, the unique α-rough path X above X can be called the

canonical rough path over X. We let R1,d be the set of all canonical rough paths
over paths X ∈C1 (see Lemma 8.14).

8.8. Lack of continuity

We have seen in Lemma 8.14 that, for α> 1

2
, the map Cα∋X %→X2∈C22α is contin-

uous. It is a crucial fact that this continuity property can not be extended to α! 1

2
,

as shown by the next example.
For n∈N consider the smooth paths Xn

1, Xn
2: [0, 1]→R

Xn
1(t) :=

1
n

√ cos (nt) , Xn
2(t) :=

1
n

√ sin (nt) .

We have already shown in Lemma 8.7 that Xn
1→ 0 and Xn

2→ 0 in Cα, for all α∈ (0,
1

2
). More precisely, we have shown that Xn

1$1

2
0 and Xn

2$1

2
0, by showing that

∥δXn
1∥1

2
≤ 2, ∥δXn

2∥1
2
≤ 2 for all n∈N and, obviously, ∥Xn

1∥∞→ 0, ∥Xn
2∥∞→ 0. Next

we set

In
ij(t) :=

∫

0

t

Xn
i(u) dXn

j(u) , for i, j ∈ {1, 2} ,

and correspondingly

(Xn
2)st
ij= (8.28)

=

∫

s

t

(Xn
i(u)−Xn

i(s)) dXn
j(u)= In

ij(t)− Inij(s)−Xn
i(s)(Xn

j(t)−Xn
j(s)) .

It is not difficult to show that (Xn
2)ij→ (X2)ij in C2θ, for any θ∈(0,1), where we define

(X2)st
ij=

⎛

⎜⎜⎝
0

t− s
2

−t− s
2

0

⎞

⎟⎟⎠=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t− s
2

if i=1, j=2

− t− s
2

if i=2, j=1

0 if i= j

. (8.29)

As a consequence, for any α ∈ (1
3
, 1
2
), we have Xn

1→ 0 in Cα and Xn
2→X2 in C2

2α,
that is the canonical rough path (Xn

1,Xn
2) converge in Rα,d to the rough path (0,X2).

Let us prove that (Xn
2)ij→ (X2)ij in C2θ, for any θ∈ (0,1). We have already shown

the pointwise (actually uniform) convergence In12(t)→
1

2
t. With similar arguments,

one shows the uniform convergence In
ij→ I ij defined by

I ij(t)=

⎛

⎜⎜⎝
0

t
2

− t
2

0

⎞

⎟⎟⎠=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t

2
if i=1, j=2

− t

2
if i=2, j=1

0 if i= j

.
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It follows by (8.28) that we have the uniform convergence (Xn
2)st
ij→ I ij(t)− I ij(s)=

(X2)st
ij. To prove convergence in C2

θ, it suffices to show a uniform “Lipschitz-like”
bound |(Xn

2)st
ij |≤ 2 |t− s|, which is easy:

|(Xn
2)st
ij | ≤

∫

s

t

|Xn
i(u)−Xn

i(s)| |(Xn
j)′(u)| du

≤ 2 ∥Xn
i∥∞ ∥(Xn

j)′∥∞|t− s|

= 2
1
n

√ n
n

√ |t− s|

= 2 |t− s| .

8.9. Proof of Proposition 8.5

Given continuous functions X,Y : [0, T ]→R, let us define R1, R2∈C2

R1(X, Y )st :=−Ys δXst , R2(X,Y )st :=Xt δYst , 0! s! t!T , (8.30)

and note that
Rst
2 =Rst

1 + δ(XY )st .

Recalling Remark 8.6, it is easy to check that R1 and R2 satisfy

δR1(X,Y )sut= δR2(X,Y )sut= δYsu δXut . (8.31)

However, neither R1 nor R2 are in C2
α+β in general, because we can only estimate

∥R1∥α! ∥Y ∥∞ ∥δX∥α , ∥R2∥β! ∥X∥∞ ∥δY ∥β . (8.32)

We are going to show that, by combining R1 and R2 in a suitable way, one can build
R which satisfies both (8.8) and (8.9). This yields the existence of an integral.

We start with a technical approximation lemma.

Lemma 8.17. Given f ∈ Cα, there is a sequence (f̃n)n⊂C∞ such that

f(x)= f(0)+
∑

n≥0
f̃n(x) , ∀x∈ [0, T ] . (8.33)

One can choose f̃n so that for every n≥ 0

∥f̃n∥∞!C ∥δf ∥α 2−nα , ∥f̃n′∥∞!C ∥δf ∥α 2n(1−α) , (8.34)

where C ∈ (0,∞) depends only on T (e.g. one can take C =2(T α+1)).

Proof. We may assume without loss of generality that f(x) = 0 (it suffices to
redefine f(x) as f(x)− f(0), which does not change ∥δf ∥α.)

We extend f :R→R (e.g. with f(x) := f(0) for x!0 and f(x) := f(T ) for x≥T )
so that ∥f ∥α is not changed. Then we fix a probability density φ: [−1, 1]→ [0,∞)
with φ∈C1 and for n≥ 0 we define the rescaled density

φn(x) := 2nφ(2nx) .
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Next, for n≥ 0, we set fn(x) := (f ∗ φn)(x), that is

fn(x) :=

∫

R
f(z) φn(x− z) dz=

∫

R
f(x− z) φn(z) dz

=

∫

R
f(x− z

2n
)φ(z) dz . (8.35)

It is easy to check that ∥fn− f ∥∞→ 0. Next we define

f̃0(x) := f0(x) , for k≥ 1: f̃k(x) := fk(x)− fk−1(x) .

Note that
∑

k=0
n f̃k= fn, hence relation (8.33) is proved (we recall that f(0)= 0).

We now prove the first relation in (8.34). Since f(0)=0, for all x∈ [0, T ] we can
write

|f̃0(x)|=|f0(x)|!
∫

R
|f(x− z)| φ(z) dz=

∫

R
|f(x− z)− f(0)|φ(z) dz

!∥δf ∥α
∫

R
|x− z |α φ(z) dz! (T α+1) ∥δf ∥α ,

where for the last inequality we have used (x+ y)α!xα+ yα (for α<1 and x, y≥0),
x! T and

∫
R
|z |α φ(z) dz!

∫
[−1,1]φ(z) dz=1, because φ is a density supported on

[−1, 1]. For k≥ 1 we estimate

|f̃k(x)| = |fk(x)− fk−1(x)|

!
∫

R
|f(x− z

2k
)− f(x− z

2k−1
)| φ(z) dz

! 2−kα ∥δf ∥α
again because

∫
R
|z |αφ(z) dz! 1. We have proved the first relation in (8.34).

We finally prove the second relation in (8.34). Note that

fn
′(x)=

∫

R
f(z) φn

′ (x− z) dz=2n
∫

R
f(x− z

2n
) φ′(z) dz ,

which has the same form as fn(x), see the last integral in (8.35), just with an extra
multiplicative factor 2n and with φ replaced by φ′. Arguing as before, we obtain

|f̃0′(x)|= |f0′(x)|! (T α+1)

(∫

[−1,1]
|φ′(z)| dz

)
∥δf ∥α ,

|f̃k′(x)|= |fk′(x)− fk−1
′ (x)|! 2k(1−α)

(∫

[−1,1]
|φ′(z)| dz

)
∥δf ∥α,

for k≥ 1. We can choose φ to be symmetric, decreasing on [0, 1], with φ(0)=1 and
φ(1)= 0, so that

∫

[−1,1]
|φ′(z)| dz=2

∫

0

1

(−φ′(z)) dz=2 (φ(0)− φ(1))= 2 ,

and this completes the proof. %
Proof of Proposition 8.5. The existence of an integral is an immediate conse-
quence of Remark 8.6, because if we define Rst := J≺(X, Y )st, then both relations
(8.8) and (8.9) are satisfied.
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It remains to build J≺. Let us write, applying Lemma 8.17,

X(x)=X(0)+
∑

m≥0
X̃n(x) , Y (x)=Y (0)+

∑

n≥0
Ỹm(x) .

Recalling (8.30), we define

J≺(X,Y ) :=
∑

0!m!n
R1(X̃n, Ỹm)+

∑

0!n<m
R2(X̃n, Ỹm) . (8.36)

We show below that the series converge uniformly. Note that
∑

n≥0 X̃n(x)=X(x)−
X(0), hence

∑
n≥0 δX̃n= δ(X −X(0)) = δX, and similarly for Y . Applying (8.31),

we get
δ J≺(X,Y )sut=

∑

0!m!n
(δ Ỹn)su (δX̃m)ut+

∑

0!n<m
(δ Ỹn)su (δX̃m)ut

=

(∑

n≥0
(δ Ỹn)su

)(∑

m≥0
(δX̃m)ut

)
= δYsu δXut ,

which proves (8.7). We now prove (8.6). Note that, by (8.34),

|(δX̃n)st|! ∥X̃n
′∥∞ |t− s|!C ∥δX∥α 2−αn(2n |t− s|) ,

but at the same time, always by (8.34),

|(δX̃n)st|! |X̃n(s)|+ |X̃n(t)|! 2 ∥X̃n∥∞! 2C ∥δX∥α 2−αn .

Altogether, using the notation x∧ y :=min {x, y},

|(δX̃n)st|! 2C ∥δX∥α 2−αn (2n|t− s|∧ 1) .
Similarly

|(δ Ỹm)st|! 2C ∥δY ∥β 2−βm (2m|t− s|∧ 1) .

Recalling (8.30) and applying again (8.34), we get

|R1(X̃n, Ỹm)st| ! ∥Ỹm∥∞ |(δX̃n)st|
! 2C2 ∥δX∥α ∥δY ∥β 2−αn 2−βm(2n|t− s|∧ 1) .

and similarly

|R2(X̃n, Ỹm)st| ! ∥X̃n∥∞ |(δỸm)st|
! 2C2 ∥δX∥α ∥δY ∥β 2−αn 2−βm (2m|t− s|∧ 1)

These relations show that the series in (8.36) converge indeed uniformly. We now
plug these estimates into (8.36), getting

|J≺(X,Y )st| ! 2C2 ∥δX∥α ∥δY ∥β
( ∑

0!m!n
2−αn 2−βm (2m|t− s|∧ 1)

+
∑

0!n<m
2−αn 2−βm (2n|t− s|∧ 1)

)
. (8.37)
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Let us set for convenience

k̄= k̄st := log2
1

|t− s| ,

so that 2m|t− s|! 2 if and only if m! k̄. Since ∑n=m
∞ 2−αn! 1

1− 2−α 2
−αm, the first

sum in (8.37) can be bounded as follows (neglecting the prefactor (1− 2−α)−1):
∑

m≥0
2−(α+β)m (2m|t− s|∧ 1)!|t− s|

∑

0!m<k̄

2(1−α−β)m+
∑

m≥k̄

2−(α+β)m

!|t− s| 2
(1−α−β)k̄

21−α−β− 1
+

2−(α+β)k̄

1− 2−(α+β)

!
{

1
21−α−β− 1

+
1

1− 2−(α+β)

}
|t− s|α+β .

The same estimates apply to the second sum in (8.37), hence (8.6) is proved. %

Remark 8.18. In the previous proof, if α+ β=1, then we have
∑

0!m<k̄

2(1−α−β)m︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
=1

= k̄= log2
1

|t− s|

and therefore we obtain, instead of (8.6), that

|J≺(f , g)|st" |t− s| log 1
|t− s| , 0! s< t!T .
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