CHAPTER 8
ROUGH PATHS

We have seen in Chapter 3 that it is possible to build a robust theory for a controlled
equation of the form Y; = (Y;) X; with X: [0, 7] — R? of class C* for a € (1 l}
provided we choose a function X% [0, T]2 — R¢® R? satisfying for 0<s<u<t<T

5X§ut_xéu®xuta ’th’ 5 ’t_8’2aa
see (3.13), where we denote X}, :=06X,;, 0<s<t<T. In coordinates, the former
identity means

(6X2)% , = 5X1, 6X7

sut ut’

(X2 < |t — 5%, i,je{l,...,d}. (8.1)

In Section 3.2 we left the problem of the existence of such a function X2 open.
We recall that, for X of class C!, we have a natural choice for X2 given by

t
(Xit)“::/(Xﬁ—Xé)Xﬂdr, 0<s<t<T,

see (3.9). In Lemma 7.6 we saw that, for a> 3 > and X €C*([0,T];RY), the (uniquely
defined) Young integral I;” := f 0 X tdX7 satlsﬁes

t
Rg =1/ — I = X; (X{ = X{) =/ (X =X5)dx), [RG[ St —s]™,

where the integral in the right-hand side is again of the Young type and 2« > 1.

There is a clear resemblance between the two last expressions, and indeed for
o) >% we show in Lemma 8.14 below that setting (X2,)¥:= R we obtain (8.1) and
this is the only possible choice.

If now a < %, neither of these formulae is well-defined, because for 2a <1 we are
not in the setting of the Young integral. However, we have seen in Chapter 3 that
the bound |XZ| < |t — s[> is enough for the whole theory of existence, uniqueness
and stability of the rough equation (3.19) to work, even if 2a: < 1.

This suggests that, for every i, j € {1,...,d}, the function (X%)¥ can be inter-
preted as the remainder R¥ associated with an integral I/ of (X X7), where we
weaken our requirements with respect to the Young integral, namely we only require
that

P =17 = XX - X)) = (X3)Y,  [(X3)7] St —s]™,

and now 2a < 1. Therefore the choice of the rough path X = (X' X?) over X is
equivalent to the choice of a generalised integral I = [[ X ©dX €C*([0,T|; R?®@R?),
and in this case X2 plays the role of a generalised remainder with respect to the
germ (s,t)— X, ® (X; — Xj).

In this chapter we explore these notions and explain them in greater detail.
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112 RouGH pATHS

8.1. INTEGRAL BEYOND YOUNG

Let us fix (X,Y)€C*x CP. We saw in Theorem 7.3 that when o+ 8> 1 we can
define the integral I, = [, g YdX as the unique function which solves

[():O, 6]st:S/;5Xst+Rst; RstZO(t—S). (82)
This was based on the observation that for the germ A, :=Y; d X, we have
0Asur=—0Yu0Xee = [6A[ars<|6X|lall6Y |5

Therefore if n:=a+ §>1 we have ||0Al|, < oo, i.e. the germ A is coherent, see
Definition 6.7, and the Sewing Lemma can be applied, see Theorem 6.8.

We now focus on the regime o+ < 1. As we have already seen in (7.8) above,
there exist germs A which allow no function I solving (8.2). Indeed, we recall
that choosing X; =t and Y, =t% t ¢ [0, 7], then the germ Ay :=Y; 0 X, satisfies
’5140%1&‘ >t+8 see (7.8), and therefore the necessary condition (6.9) in Lemma 6.5
is not satisfied.

A solution is to relax the requirement Ry =o(t — ) in (8.2), say to

dn< 1 | Rt S|t — s ™. (8.3)
Arguing as in Lemma 6.5, this would imply
|0 Rout| STt —s["+ |u—s["+ [t —u]" S Ju— s+ [t —ul"

since 7 < 1. On the other hand, by Proposition 6.4 we have |6 Ryl = [0 Asut| S
lu — s|°|t —u|®. Choosing |u — s| = |t —u| shows that the best we can hope for in
(8.3)is n=a+ 0.

Summarizing, given (X,Y) € C® x C” with a + <1, it is natural to wonder
whether there exists a function I which satisfies the following weakening of (8.2)

Iy=0, 0l =Y, 60X+ Rat |Rot| S|t — 5|27, (8.4)

This would provide a “generalised notion of integral” [ 6YdX . This justifies the
following

DEFINITION 8.1. Fiz o, 3€(0,1) with a+ 3<1. Given (X,Y)e€C*x CP, if there
exists a function I:[0,T] — R which satisfies

Ii— =Y, (X; — X,) + O(|t — s]**F) uniformly as |t —s| — 0, (8.5)
we say that I is a generalised integral of Y in dX.

We stress that this new definition of integral extends the previous one (8.2) for
(X,Y)€C®x CP with a+ 3> 1, because the term o(t — s) is actually O(|t — s|**?)
in this case, by the key estimate for the Young integral (or, equivalently, for the
sewing map).

On the positive side, there is always ezxistence for (8.]) if a+ < 1. Thisis a
non-trivial result, due (in a more general setting) to Lyons and Victoir. We state
this as a separate result, which is a consequence of Proposition 8.5 below.
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LEMMA 8.2. Let (X,Y)€C*x C? with a+ B <1. There exists (I, R) €C*x CyF
satisfying (8.4).

Remark 8.3. It is an easy observation that uniqueness can not hold for (8.4).
Indeed, given I which solves (8.4), any function of the form I{:= I + hy — hy with
h € C*P still solves (8.4). As a matter of fact, all solutions are of this form, because
given two solutions I, I’ of (8.4), with corresponding R, R’, their difference h:=1"—1
must satisfy |dhy| = | Rl — Re| S|t — 5|27

Remark 8.4. An integral I as in Definition 8.1 is necessarily of class C* by (8.5).
We state now a result which implies Lemma 8.2 above.

PROPOSITION 8.5. (PARAINTEGRAL) Fizx o, € (0,1) with o+ B<1. There exists
a (non unique) bilinear and continuous map J-:C*x C?— CSP such that

[J<(X, Y ) [[ar s < Cl0X [0 16Y |5, (8.6)
for a suitable C=C(«, 3,T), with the property that, for all s <u<t,
3T<(X, Y Vst = 0 Yiu 6 Xut - (8.7)

The proof of Proposition 8.5 is postponed to Section 8.9 below.

Remark 8.6. Let o, 5€(0,1) with a+ < 1. Finding a generalised integral of Y
in dX for (X,Y)€Cx CP as in Definition 8.1 is equivalent to finding R, € C§“+B
such that

(SRsut:(SY;u 5Xut 3 (88)
ReCy™h. 8.9)

Indeed, if we define Ay :=Y; Xy, relation (8.8) implies that §(A + R) =0, hence
there exists 1:]0,7] — R which satisfies 6] = A+ R, which is exactly relation (8.5).

By Proposition 8.5 and Remark 8.6, if a, f€(0,1) and a+ <1, any (X,
Y) €C® x CP admits an integral I as in Definition 8.1.

8.2. A NEGATIVE RESULT

We show that the usual integral I(f,g)= fotfs g.ds, when g € C'!, cannot be extended
to a continuous operator on C* x C?', when o/ + 3’ < 1.

LEMMA 8.7. Set [0,T]=[0,1] and define, for o, € (0,1),

fn(t) II%COS (nt), gn(t) ::%Sin (nt).

Then fn,~>40 and g,~>30 (recall Definition 7.15), more precisely:
[falle =0, lofnlla <2; [gnllc =0, [0gnlls<2. (8.10)
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(In particular, f,— 0 in C*" and g, — 0 in C% for any o/ <« and 3'< 3.)
However, if we fit a+ 3<1, we have I( fy, gn) + 0, because

+oo if a+p<1
vt e [0, 1]: lim I(fn, gn)t= %t if a+B=1.
0 if a+06>1

Proof. Note that || fu|lce=n"% and || f;]|cc = n'~, hence
| foy = fod <min{|| filloclt = s, 2| falloo} < min {n' "%t —s|,2 n7}.
Since min {z, y} <z7y'™, for any « € [0, 1], choosing v =« we obtain
[ fult) = fuls)| <27 [t = 5],

hence || fn]|o <2'7* < 2. Similar arguments apply to gn, proving (8.10).

Next we observe that % i) 02 "cos?(x) dz = f ) sin?(x) dx = . Then, for fixed
t>0,as n— o0

nt

mCOSQ(CL’)dx— 27rL2WJcosz(x)dx—i-O(l)—127TVL—75J —i—O(l)—ETH—O(l)
. ~ —272r =3 '

It follows that

t nt
I(fn, gn)t:#/o cos’(ns)ds= no‘1+5/0 cos?(x) dxwénl—(oﬁﬁ)' 0

8.3. A CHOICE

We have seen in (7.11) above that, given (X,Y) € C* x C? with a+ 3> 1, we have
an ezplicit formula for the remainder Ry = I; — I, — Y; (X, — X§), given by

t
Rst:/(Yu—Ys)qu, 0<s<t<T, (8.11)

where [, = f o Yud X, is the unique function given by the Young integral of Theorem
7.1. Moreover Ry = f (Y, —Y;) dX, is the unique function in Cy which satisfies

ReCyt?, ORgut =0Ys 0 Xy,  0<s<u<t<T. (8.12)

In the regime o+ 3 < 1, the Young integral is not available anymore. However by
Proposition 8.5 we know that we can find an integral / € C* in the sense of Definition
8.1 by setting

5[st - (Xt Xs) - J—<<X7 Y)Sta

where J is the paraintegral of Proposition 8.5, see also Remark 8.6. This shows that,
in this setting, the remainder Ry =1I; — I, — Y; (X; — X;) is not given by an explicit
formula like (8.11) (which is now ill-defined), rather we have

R: _:].<(X,Y)
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However formula (8.11) suggests that we can define
t
/(Yu—ys)dxu;: = —J(X, V), 0<s<t<T (8.13)

In other words, the left hand side of (8.13) is chosen to be equal to the remainder
R associated with the integral [ as in (8.4). We recall that R=—J(X,Y") satisfies

RGCZQJFBa 5Rsut:5Y9u5Xut; O<S<U<t<T (814)

The difference between formula (8.14) and formula (8.12), is that in the former
a+ [ <1 while in the latter o+ 3> 1. Accordingly, in (8.14) the function R is not
uniquely determined, while in (8.12) it is.

The comparison between formula (8.14) and formula (8.12), and the explicit
expression (8.11) in the case a+ 5> 1 show that (8.13) is a reasonable definition of
the function (s,t)+— fst(Y;L —Y;) dX, in the setting a4+ # < 1.

We also stress that R in (8.14) can not be uniquely determined. Indeed, by
Remark 8.3, we have infinitely many possible choices given by

R'=R+4h, heCoth hy=0. (8.15)
Remark 8.8. In the special case X =Y and a= (< %, (8.4) becomes

[OIO, 5Ist:X55Xst+Rst; |R5t’§’t—8’2a. (816)

Now the germ is Ay = X(X; — X;) and we have a simple canonical solution which
does not rely on the paraintegral and is given by

1 1
[tZZE(XtQ_X(?)a Rst::g(Xt_Xs)z’
since
1 1
5 (XP = X2) = X,(X, = X,) + (X - X,)%
It—vI Ast R, t

As we have seen in (7.15)-(7.16), if « >% then (I, R) is the only solution of (8.16)
and moreover

t
&F/ﬂx—&m&

where the integral is in the Young sense. If a < %, then we have infinitely many
possible solutions (I’, R’).

8.4. ONE-DIMENSIONAL ROUGH PATHS

We have seen at the beginning of this chapter that for every ¢, j € {1,...,d}, the
function (X%)¥ plays the role of the remainder R¥ associated with a generalised
integral I of (X*, X7) in the sense of Definition 8.1 with a = 3 < %: in other words
the choice of X? is equivalent to the choice of integrals (in the sense of Definition
8.1) I'"eC* for all i, j €{1,...,d}, such that

I9=0,  SLi=XIoX5+(E)T, |(X2)I| S| — sl
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or, in more compact notations,
10:0, 5Ist:XS®X§t+X§t7 |X§t|§|t—8|2a (817)

Existence of X? satisfying (8.17) with a <%is therefore granted by Lemma 8.2, e.g.
via the paraintegral of Theorem 8.5. We also know that in the regime « <% we have
infinitely many possible choices for (I, X?), all of the form (8.15) above.

Suppose first that we are in the setting d=1. Then Definition 3.2 becomes

DEFINITION 8.9. Let o € ]%,%] and X:[0,T] =R of class C*. A a-Rough Path over
X is a pair X= (X' X?) € Cs x C3“ such that

Xslt:Xt _Xs; 6X§ut:X§uX}Lt (818)

We recall that the conditions X € C® and X!'= X € C% are equivalent, and that
(X!, X2) € OF x C3* is equivalent to

Xal SltE—sl [XES - s

We have seen in Chapter 3 that it is possible to build an integration theory for every
choice of the a-rough path X over X. In this theory we can recover existence and
uniqueness of the integral function [, (;Y dX for a large class of choices of Y. For
this we have to give very different roles to the integrator X and to the integrand Y,
whereas in the case of the Young integral the two functions play a symmetric role:
X will be a component of a rough path and Y a component of a controlled path, see
Chapter 10.

We note that the algebraic condition §X2,, =X}, X!, is non-linear, which implies
that a-rough paths do not form a vector subspace of C§ x C3°.

11
For all a € (5,5
a rough path lying above X. Indeed, [;:= %XE is a generalised integral of X in dX

|, given any real-valued path X € C*([0,T];R), there is always
integral in the sense of Definition 8.1, because
3= (XP — X2) = X 0K+ 2 (0Xe0)?= X 0Xos 4 O(f1 —5[2).

Then, by Remark 8.8, we can define a rough path X by setting

xgtzéwxst)?. (8.19)
More directly, note that (8.19) satisfies the Chen relation (8.21), and clearly X?* €
C3.
8.5. THE VECTOR CASE

Let us consider now a vector valued path X:[0,T] — RY, with X, = (X},..., X{). We
suppose that X is of class C%, namely that X C® for all i=1,...,d, with o > %
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We can now generalise Definition 8.9 to the vector case. The multi-dimensional
case d > 2 is sensibly richer, because off-diagonal terms [ X *dX7 with i # j do not
have explicit candidates as in (8.19).

DEFINITION 8.10. Let a € ]é,%], d>1 and X:[0,T] — R? of class C*. A a-Rough

Path on R? over X is a pair X= (X1, X?), with
o X!'=(0X% . 4€C(0,T];RY)
o XP=(RY)ijo1,...a€ 030, TG RIORY)
such that
(0XZu)" = (X5,)" (Xar)?, (8.20)
or equivalently
XZ—X2, - X3 =XL, 90X, (8.21)

We denote by Ra.q the space of a-rough paths on R? and by Re.a(X) the set of a-
rough paths over X.

The condition (8.20)-(8.21) is the celebrated Chen relation. As in the one-dimen-
sional case, existence of X? satisfying (8.20)-(8.21) with « <% is therefore granted
by Lemma 8.2, e.g. via the paraintegral of Theorem 8.5. We also know that in the
regime « <% we have infinitely many possible choices for (I, X?), all of the form
(8.15) above.

We are going to see in Chapter 10 that it is possible to build an integration theory
for every choice of an a-rough path X. Again, we note that the condition (8.20)-
(8.21) is non-linear, which implies that a-rough paths do not form a vector space.

The following exercise is a simple summary of the discussion at the beginning of
this chapter.

Exercise 8.1. Given a a-rough path X = (X!, X2) over X in R? a process I € C%([0, T7;
R?® RY) satisfying (8.17) is a generalised integral of X in dX in the sense of Definition 8.1.
Viceversa, given X € C%([0,7]; R?) and an integral I € C*([0,T]; R¢®R%) of X in dX, in
the sense of Definition 8.1, defining X2 by (8.17) we obtain a a-rough path X = (X!, X?) over
X in R4
In the multi-dimensional case X € C%([0,T]; R?) with d > 2, building a rough path
over X is non-trivial, because one has to define off-diagonal integrals [ X*dX7 for
i+ j. However, by the results we have proved on the existence of the paraintegral
in Proposition 8.5, we can easily deduce the following.

PROPOSITION 8.11. For any deN, a € (%,%) and X €C*([0,T);RY), there is a a-

rough path X which lies above X (hence, by Lemma 8.15, there are infinitely many
of them).

Proof. For any fixed 7,7 €{1,...,d}, let I be a generalised integral of X*in dX7
in the sense of Definition 8.1, whose existence is guaranteed by the paraintegral of

Proposition 8.5. Then, by Exercise 8.1, defining X2 by (8.17) we obtain a rough path
X which lies above X. O
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We conclude with an elementary observation, that will be useful later. By Exer-
cise 8.1, any a-rough path X over X € C%([0,7];R?) determines an integral I of (X,
X), given by (8.17). Applying the latter relation in a telescopic fashion, we can write

[t = Z (th 5Xtiti+1 + X%¢t¢+1> ) (822)

[ti,tiJrﬂ cP

where P={0=tg<t;<...<tp=t} is an arbitrary partition of [0,¢]. We will see
in Chapter 10 below that a generalization of (8.22), when we also take the limit of
vanishing mesh |P|— 0, is the correct recipe for building “Riemann-sums”; in order
to define a generalised integral of h in dX in the sense of Definition 8.1 for a wide
class of functions h.

8.6. DISTANCE ON ROUGH PATHS

We denote by R, 4 the set of all a-rough paths in R For X = (X!, X?) € R,, 4 we set

X

X2
X=X o+ [ = sup Pty P
0<s<t<T | 3| 0<s<t<T | 3|

(8.23)

We stress that Ra q is not a vector space, because the Chen relation (8.21) is not
linear. However, it is meaningful to define for X, X € R, 4

dr,, (X, X): =[] X" = X0+ [|X2 — X224 (8.24)

Exercise 8.2. dr, , is a distance on Rq, 4.

When we talk of convergence in R, 4, we mean with respect to the distance
dr, . Note that dg, , is equal on R, 4 to the distance induced by the natural norm
| Fla+ ||Gl2a for (F,G) e Cs x C3*. In particular X,, = (X}, X?) —» X = (X!, X?)
in Ra.q if and only if X}, — X! in C¢ and X3 — X? in C3“.

LEMMA 8.12. The metric space (Ra,4,dr, ,) 15 complete.

Proof. Let (X,,)nen C Ra,q be a Cauchy sequence. Then, by definition of dg, ,, for
every € >0 there is n. < oo such that for all n,m >n. and 0<s<t <T

IXH(s,t) = X0 (s, 1) <elt —s|*, [X2(s,t)— X2 (s,t)| <e|t —s|?. (8.25)

Note that

1l 2 w2
> X fﬁ loo | [IX* = Xloo

d'Ra,d(X> X) T TQa

It follows that the sequences of continuous functions (X.),en and (X2),cn are
Cauchy in the sup-norm, hence there are continuous functions X' and X2 such that
X} — XYoo — 0 and ||XZ — X?||o, — 0. In particular, we have pointwise convergence
Xh(s,t) — X1(s,t) and X2(s,t) — X?(s,t) as m — oco. Taking this limit in (8.25)
shows that dr, ,(X,, X) < 2¢ for all n >n,. O
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This allows to rephrase the continuity result of section 3.7. We fix
D > |Vo oo+ IV [l + VP [loo + [ Vo2 o + [ V02 |-

We obtain from Proposition 3.11

PROPOSITION 8.13. We suppose that o € (%,%} and o: R¥—RF ® (RY)* is of class

C3, with Vo ||+ || V20 ||oo+ | V30 ||l oo + [| Vo2 oo + || Vo2 0o < +00 (without bound-
edness assumptions on ¢ and o3). For X € Ryq and Zy € R* we denote by Z:
[0, 7] — R* the unique solution to equation (3.19)

Z¥=o(t—s), Z¥=672,—0(Z)XY— 02(Z) X2,

Then the map R* X Reo.43 (Zo, X) — Z €C* is locally Lipschitz continuous.

1
8.7. CANONICAL ROUGH PATHS FOR o > 5

Let %< a’<%< a< 1. Then it is well known that C* C C*'. Therefore, if X €C([0,T7;

R?) we have in particular X € C*'([0,T];R%) and therefore there is a a/-rough path
X over X. However, is there a a-rough path over X? Note that we have restricted

Definition 8.10 to the range o € (%, %}, while here we are discussing the existence of

X210, T2 — R¢®@ R? satisfying the Chen relation (8.21) and
X5 St — s[>

1
where now a > 5

LEMMA 8.14. Let o € (%, 1]. For every X € C%([0, T); RY), there is a unique X*:
0, T)2 - RI®@R? satisfying the Chen relation (8.21) and such that X*€ C3*. We
have the explicit formula

t
th:/xgu@@dxu, XL, =6Xy, 0<s<t<T, (8.26)

where the integral is in the Young sense. Moreover the map C*> X — X2 € C3* is
continuous (in particular, locally Lipschitz-continuous).

Proof. It is easy to check that X? in (8.26) satisfies the Chen relation (8.18), thanks
to the bi-linearity of the Young integral. Indeed, we can rewrite (8.26) as

t
X2 = / X, ®dX, — X, (X~ X, (8.27)

hence for s <u <t we have that
(5X2)sut = _Xs & (Xt - Xs) + Xs X (Xu - Xs) + Xu X (Xt - Xu)

== (5Xsu ® (5Xut .
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We show now that X2 3. We recall that the Young integral satisfies the following
key estimate, for f €C® and g € C? with o+ 3> 1:

Seasplt — 5[0

[fdg— fs (9= 9s)

Choosing f=X"and g= X7 shows that X2, given by (8.27), is O(|t — s|**). Finally,
we prove the continuity of C*3 X — X2%e€ C2*. Given X, X €C® and the respective
X2, X2 e 3, we have

t t
X2, - X% = / (XL, — XL) @ d X, + / KL @d(X - X).,

with all integrals in the Young sense. Then by the Sewing Lemma
X2 = X220 < Koal[|0X Jla+ [0X [|a) [6X = 0X ..

The proof is complete. u

Therefore, we could extend Definition 8.10 to a-rough paths for a € ( 1]. For
(— 1] and X € C*([0,T]; RY) there is a unique a-rough path over X, which we
all the canonical mugh path over X.
Whlle for a> 5 L there is a unique rough path lying above a given path X € C¢,
for a < 5 there are 1nﬁn1tely many of them, that can be characterized explicitly.

Then

LEMMA 8.15. Let X= (X', X?) be a a-rough path in RY, with a € 5}
®RY) one

X = (X!, X?) is a a-rough path if and only if for some f € C>**([0,T);
has X?=X2+0f, that is

Xst:X§t+ft_f37 0<8<t<T

ﬁgﬁ

Proof. By assumption X? and X? satisfy the Chen relation (8.21). If X?=X2+§f
then X% C3* if and only if X2 =§X? and X? € C3%. Therefore, if X is a a-rough
path then so is X.

Viceversa, if X is a a-rough path, then §X?= X2 because both X and X satisfy
the Chen relation (8.21) with the same X', hence X2=X2+§f for some f. Since
both X2, X2 belong to C2%, then also 6 f € C2%, which is the same as f € C?. O

Remark 8.16. We mamly work with a-Hoélder rough pats for a € ( ) excluding
the boundary case a =+ L for technical reasons. Let us stress that, by domg SO, we are
not throwing away any rough paths, but only giving up a tiny amount of reqularity,
because any %—rough path is a a-rough path, for any a < %

To summarize, the situation is the following:
1. For e € (i, 1] and X €C*([0,T]; RY) there is a unique a-rough path over X

2. For a € (
over X

T 2) and X € CY([0,T]; RY), there are infinitely many a-rough paths
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3. For a= %, either there is no a-rough path over X, or there are infinitely many
of them.

In the range o € (%, 1}, the unique a-rough path X above X can be called the
canonical rough path over X. We let Ry 4 be the set of all canonical rough paths
over paths X € C'! (see Lemma 8.14).

8.8. LACK OF CONTINUITY

We have seen in Lemma 8.14 that, for o > 1 the map C®> X — X2 € C3* is contin-

uous. It is a crucial fact that this contlnulty property can not be extended to a < ;,

as shown by the next example.
For n € N consider the smooth paths X}, X2:[0,1] = R

Xt Z:%COS (nt), X2(t) ::%Sin (nt).

We have already shown in Lemma 8.7 that X, — 0 and X?— 0 in C?, for all a € (0,
) More precisely, we have shown that X, 1 0 and X2 1 0, by showing that

loX} ||1 <2, ||5X2||1 <2 for all n €N and, 0bv10usly, | X ||oo—>() | X2||o— 0. Next

we set
I(t /XZ u) dX? (u for i, 5 €{1,2},
and correspondingly
(X3 = (8.28)
Z/t(Xf;(U) — Xa(s)) dX;(u) = L) (1) — I/ (s) — Xi(s) (X3 (1) — X()) -

It is not difficult to show that (X2)¥ — (X2)¥ in C, for any 6 € (0,1), where we define

0 L—s S ifi=1,5=2
Xd=| _y 2 |y -2 iti=2 =1 (8.29)
5 ! 0 if i = j

As a consequence, for any o € (3, ;) we have X! — 0 in C* and X2 — X? in C2“
that is the canonical rough path (X}, X2) converge in Ra.q to the rough path (0,X2).

Let us prove that (X2)¥ — (X2)¥ in CY, for any 6 € (0,1). We have already shown
the pointwise (actually uniform) convergence L(t) —>%t. With similar arguments,
one shows the uniform convergence I’ — I defined by

5 ifi=1,j=2
= —5 ifi=2,j=1"
2 0 ifi=j

I9(t)=
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It follows by (8.28) that we have the uniform convergence (X2)4 — I%(t) — I(s) =
(X?»)4. To prove convergence in CY, it suffices to show a uniform “Lipschitz-like”
bound [(X2)7| < 2|t — s|, which is easy:

(X2l < /\XZ a($)1(X5)"(u)| du
< 2IIXZIIOOII(X]) loolt = s

L ]
\/_\/_
= 2|t—s].

8.9. PROOF OF PROPOSITION 8.5

Given continuous functions X,Y:[0,7] — R, let us define R', R*€ C,
RMX,Y)sy:=-Y, 60Xy, R¥(X,Y)s:=X;0Yy, 0<s<t<T, (8.30)
and note that
R:E =Ry +0(XY)y.
Recalling Remark 8.6, it is easy to check that R! and R? satisfy
ORY X, Y )sut = 0R*(X,Y )sut = 0 Yo 0 X s . (8.31)

However, neither R nor R? are in C% "0 in general, because we can only estimate

IR <MY lloo 06X Mla, (B2l < Xloo [16Y |- (8.32)

We are going to show that, by combining R! and R? in a suitable way, one can build
R which satisfies both (8.8) and (8.9). This yields the existence of an integral.
We start with a technical approximation lemma.

LEMMA 8.17. Given f €C®, there is a sequence ( fn), C C™ such that

0)+>  falz),  Vze0,T]. (8.33)

n>0

One can choose f, so that for every n>0
Il <Clofla2™ il SC N8 02", (8.34)
where C € (0,00) depends only on T (e.g. one can take C=2(T“+1)).

Proof. We may assume without loss of generality that f(z)=0 (it suffices to
redefine f(x) as f(x)— f(0), which does not change [|6f]|a-)

We extend f:R—1R (e.g. with f(x):= f(0) for x <0 and f(z):= f(T) for x >T)
so that || f|, is not changed. Then we fix a probability density ¢:[—1,1] — [0, c0)
with ¢ € C' and for n >0 we define the rescaled density

Pn(T) :=2"0(2" ).
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Next, for n >0, we set f,(z):=(f* ¢,)(x), that is

A flz—2)o(z) dz. (3.35)
It is easy to check that || f, — f]lcc — 0. Next we define
fo(x):= folw),  for k>1:  fu(@):= filx) = fi(z).

Note that Y, fi= fn, hence relation (8.33) is proved (we recall that f(0)=0).
We now prove the first relation in (8.34). Since f(0)=0, for all z €[0,7T] we can
write

| o) = fol |</|f:c—z|¢ dz—/|f:v—z £(0)]6(2) dz
<||5f||a/ & — 2[* ¢(2) dz < (T%+ 1) [|6f |

where for the last inequality we have used (x+y)*<z*+y* (for a<1 and z,y >0),
x<T and f]R]z]a z)dz < f z)dz =1, because ¢ is a density supported on

[~1,1]. For k> 1 we estlmate

| fu(@)] = | fu(@) = froi(2)]
/|fx—2k flo - 2] 6(2) dz
< 2 |6f

again because [ |2]%¢(z)dz <1. We have proved the first relation in (8.34).
We finally prove the second relation in (8.34). Note that

/f ) pr(x — 2) dz—Q”/fx—— (2)dz,

which has the same form as f,(z), see the last integral in (8.35), just with an extra
multiplicative factor 2™ and with ¢ replaced by ¢’. Arguing as before, we obtain

@) = | i) < (T2 +1) ( /[ 16(2) dz> 167 .

—1,1]

N

i) = o) = @] <20 ([ 1Nz ) 13l

for k> 1. We can choose ¢ to be symmetric, decreasing on [0, 1], with ¢(0) =1 and
¢(1)=0, so that

/ /()] dz=2 / (—6/(2)) dz=2($(0) — B(1) =2,
[~1,1] 0

and this completes the proof. U

Proof of Proposition 8.5. The existence of an integral is an immediate conse-
quence of Remark 8.6, because if we define Ry := J (X ,Y ), then both relations
(8.8) and (8.9) are satisfied.



124 RouGH pATHS

It remains to build J.. Let us write, applying Lemma 8.17,

X(@)=X(0)+ > Xu(x), Y@)=Y(0)+) Yulz).

m>0 n>0
Recalling (8.30), we define
JAX,Y)i= > RN, Y+ > RY(X,, V). (8.36)
o<m<n o<n<m

We show below that the series converge uniformly. Note that Zn>0Xn(x) =X(x)—
X(0), hence > ., 6X, =06(X — X(0)) =0X, and similarly for Y. Applying (8.31),
we get -

SI(X Y )owr= D (0Va)suw (0wt + D> (V0w (0Xim)ut

os<m<n o<n<m
n>0 m=>0

which proves (8.7). We now prove (8.6). Note that, by (8.34),
[(6X)stl S| Xilloo [t = 5[ S C[[6X [0 270" (2" [t — 1),
but at the same time, always by (8.34),
|(6Xn)stl < 1 Xn(3)] + | Xalt) < 2[| Xnlloo < 2C || X [|o 27"
Altogether, using the notation z A y :=min{z, y},
(6X,)st] 20 |6X [0 270" (27t — 5| A1)
Similarly
(6 Y;)st| <2C ||6Y ||5275™ (27|t — 5| A1)
Recalling (8.30) and applying again (8.34), we get
| RN(Xa, Vo)

/N

||}7m||oo |(5Xn)st|
202 ||6X || ||6Y [|g27m 2P (27|t — s| A 1).

N

and similarly

|R2(Xm)7m)st| < ||Xn||M|(5Ym)st|
< 2C%||6X || ||0Y ||g272m27Pm (2™t — s| A1)

These relations show that the series in (8.36) converge indeed uniformly. We now
plug these estimates into (8.36), getting

XV < 202|\6X|raum|ﬁ< S g-eng-n (2 o[ A1)

o<m<n

+ Y 2memaAm(gn)t— 5| A 1)). (8.37)

os<n<m



8.9 PROOF OF PROPOSITION 8.5 125

Let us set for convenience

- 1
k':kst::bggm,

so that 2™[¢t — s| <2 if and only if m <k. Since Y7 27" 1712_62 272" the first
sum in (8.37) can be bounded as follows (neglecting the prefactor (1 —27%)~1):

S amlethmgmit— s ALKt —s| Y 2070 Amy N g=(ekHm

m2>0 o<m<k _ m>k_
9(l—a=pB)k 9—(a+p)k
<t—s

|21—a—ﬁ_ 1 + 1—-92- (a+PB)
<{ L1 }\t—s\a+ﬁ.

21me=f_1 1 —27(+p)
The same estimates apply to the second sum in (8.37), hence (8.6) is proved. [

Remark 8.18. In the previous proof, if o+ =1, then we have

and therefore we obtain, instead of (8.6), that

[J<(f, 9l St — 3|10gﬁ7 O0<s<t<T.



