

CHAPTER 8

ROUGH PATHS

We have seen in Chapter 3 that it is possible to build a robust theory for a controlled equation of the form $\dot{Y}_t = \sigma(Y_t) \dot{X}_t$ with $X: [0, T] \rightarrow \mathbb{R}^d$ of class \mathcal{C}^α for $\alpha \in (\frac{1}{3}, \frac{1}{2}]$, provided we choose a function $\mathbb{X}^2: [0, T]^2 \rightarrow \mathbb{R}^d \otimes \mathbb{R}^d$ satisfying for $0 \leq s \leq u \leq t \leq T$

$$\delta \mathbb{X}_{sut}^2 = \mathbb{X}_{su}^1 \otimes \mathbb{X}_{ut}^1, \quad |\mathbb{X}_{st}^2| \lesssim |t-s|^{2\alpha},$$

see (3.13), where we denote $\mathbb{X}_{st}^1 := \delta X_{st}$, $0 \leq s \leq t \leq T$. In coordinates, the former identity means

$$(\delta \mathbb{X}^2)_{sut}^{ij} = \delta X_{su}^i \delta X_{ut}^j, \quad |(\mathbb{X}_{st}^2)^{ij}| \lesssim |t-s|^{2\alpha}, \quad i, j \in \{1, \dots, d\}. \quad (8.1)$$

In Section 3.2 we left the problem of the existence of such a function \mathbb{X}^2 open.

We recall that, for X of class C^1 , we have a natural choice for \mathbb{X}^2 given by

$$(\mathbb{X}_{st}^2)^{ij} := \int_s^t (X_r^i - X_s^i) \dot{X}_r^j \, dr, \quad 0 \leq s \leq t \leq T,$$

see (3.9). In Lemma 7.6 we saw that, for $\alpha > \frac{1}{2}$ and $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$, the (uniquely defined) Young integral $I_t^{ij} := \int_0^t X^i \, dX^j$ satisfies

$$R_{st}^{ij} := I_t^{ij} - I_s^{ij} - X_s^i (X_t^j - X_s^j) = \int_s^t (X_r^i - X_s^i) \, dX_r^j, \quad |R_{st}^{ij}| \lesssim |t-s|^{2\alpha},$$

where the integral in the right-hand side is again of the Young type and $2\alpha > 1$.

There is a clear resemblance between the two last expressions, and indeed for $\alpha > \frac{1}{2}$ we show in Lemma 8.14 below that setting $(\mathbb{X}_{st}^2)^{ij} := R_{st}^{ij}$ we obtain (8.1) and this is the only possible choice.

If now $\alpha \leq \frac{1}{2}$, neither of these formulae is well-defined, because for $2\alpha \leq 1$ we are not in the setting of the Young integral. However, we have seen in Chapter 3 that the bound $|\mathbb{X}_{st}^2| \lesssim |t-s|^{2\alpha}$ is enough for the whole theory of existence, uniqueness and stability of the rough equation (3.19) to work, even if $2\alpha \leq 1$.

This suggests that, for every $i, j \in \{1, \dots, d\}$, the function $(\mathbb{X}_{st}^2)^{ij}$ can be interpreted as the remainder R^{ij} associated with an integral I^{ij} of (X^i, X^j) , where we weaken our requirements with respect to the Young integral, namely we only require that

$$I_t^{ij} - I_s^{ij} - X_s^i (X_t^j - X_s^j) = (\mathbb{X}_{st}^2)^{ij}, \quad |(\mathbb{X}_{st}^2)^{ij}| \lesssim |t-s|^{2\alpha},$$

and now $2\alpha \leq 1$. Therefore the choice of the rough path $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ over X is equivalent to the choice of a *generalised integral* $I = \int_0^{\cdot} X \otimes dX \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d \otimes \mathbb{R}^d)$, and in this case \mathbb{X}^2 plays the role of a generalised remainder with respect to the germ $(s, t) \mapsto X_s \otimes (X_t - X_s)$.

In this chapter we explore these notions and explain them in greater detail.

8.1. INTEGRAL BEYOND YOUNG

Let us fix $(X, Y) \in \mathcal{C}^\alpha \times \mathcal{C}^\beta$. We saw in Theorem 7.3 that when $\alpha + \beta > 1$ we can define the integral $I_t = \int_0^t Y dX$ as the unique function which solves

$$I_0 = 0, \quad \delta I_{st} = Y_s \delta X_{st} + R_{st}, \quad R_{st} = o(t - s). \quad (8.2)$$

This was based on the observation that for the germ $A_{st} := Y_s \delta X_{st}$ we have

$$\delta A_{sut} = -\delta Y_{su} \delta X_{ut} \implies \|\delta A\|_{\alpha+\beta} \leq \|\delta X\|_\alpha \|\delta Y\|_\beta.$$

Therefore if $\eta := \alpha + \beta > 1$ we have $\|\delta A\|_\eta < \infty$, i.e. the germ A is coherent, see Definition 6.7, and the Sewing Lemma can be applied, see Theorem 6.8.

We now focus on the regime $\alpha + \beta \leq 1$. As we have already seen in (7.8) above, there exist germs A which allow *no function I solving (8.2)*. Indeed, we recall that choosing $X_t = t^\alpha$ and $Y_t = t^\beta$, $t \in [0, T]$, then the germ $A_{st} := Y_s \delta X_{st}$ satisfies $|\delta A_{0^+ t}| \gtrsim t^{\alpha+\beta}$, see (7.8), and therefore the necessary condition (6.9) in Lemma 6.5 is not satisfied.

A solution is to relax the requirement $R_{st} = o(t - s)$ in (8.2), say to

$$\exists \eta \leq 1: \quad |R_{st}| \lesssim |t - s|^\eta. \quad (8.3)$$

Arguing as in Lemma 6.5, this would imply

$$|\delta R_{sut}| \lesssim |t - s|^\eta + |u - s|^\eta + |t - u|^\eta \lesssim |u - s|^\eta + |t - u|^\eta$$

since $\eta \leq 1$. On the other hand, by Proposition 6.4 we have $|\delta R_{sut}| = |\delta A_{sut}| \lesssim |u - s|^\beta |t - u|^\alpha$. Choosing $|u - s| = |t - u|$ shows that the best we can hope for in (8.3) is $\eta = \alpha + \beta$.

Summarizing, given $(X, Y) \in \mathcal{C}^\alpha \times \mathcal{C}^\beta$ with $\alpha + \beta \leq 1$, it is natural to wonder whether there exists a function I which satisfies the following weakening of (8.2)

$$I_0 = 0, \quad \delta I_{st} = Y_s \delta X_{st} + R_{st}, \quad |R_{st}| \lesssim |t - s|^{\alpha+\beta}. \quad (8.4)$$

This would provide a “generalised notion of integral” $\int_0^t Y dX$. This justifies the following

DEFINITION 8.1. Fix $\alpha, \beta \in (0, 1)$ with $\alpha + \beta \leq 1$. Given $(X, Y) \in \mathcal{C}^\alpha \times \mathcal{C}^\beta$, if there exists a function $I: [0, T] \rightarrow \mathbb{R}$ which satisfies

$$I_t - I_s = Y_s (X_t - X_s) + O(|t - s|^{\alpha+\beta}) \quad \text{uniformly as } |t - s| \rightarrow 0, \quad (8.5)$$

we say that I is a generalised integral of Y in dX .

We stress that this new definition of integral extends the previous one (8.2) for $(X, Y) \in \mathcal{C}^\alpha \times \mathcal{C}^\beta$ with $\alpha + \beta > 1$, because the term $o(t - s)$ is actually $O(|t - s|^{\alpha+\beta})$ in this case, by the key estimate for the Young integral (or, equivalently, for the sewing map).

On the positive side, *there is always existence for (8.4)* if $\alpha + \beta < 1$. This is a non-trivial result, due (in a more general setting) to Lyons and Victoir. We state this as a separate result, which is a consequence of Proposition 8.5 below.

LEMMA 8.2. Let $(X, Y) \in \mathcal{C}^\alpha \times \mathcal{C}^\beta$ with $\alpha + \beta < 1$. There exists $(I, R) \in \mathcal{C}^\alpha \times C_2^{\alpha+\beta}$ satisfying (8.4).

Remark 8.3. It is an easy observation that *uniqueness can not hold for (8.4)*. Indeed, given I which solves (8.4), any function of the form $I'_t := I_t + h_t - h_0$ with $h \in \mathcal{C}^{\alpha+\beta}$ still solves (8.4). As a matter of fact, *all solutions are of this form*, because given two solutions I, I' of (8.4), with corresponding R, R' , their difference $h := I' - I$ must satisfy $|\delta h_{st}| = |R'_{st} - R_{st}| \lesssim |t - s|^{\alpha+\beta}$.

Remark 8.4. An integral I as in Definition 8.1 is necessarily of class \mathcal{C}^α by (8.5).

We state now a result which implies Lemma 8.2 above.

PROPOSITION 8.5. (PARAINTEGRAL) Fix $\alpha, \beta \in (0, 1)$ with $\alpha + \beta < 1$. There exists a (non unique) bilinear and continuous map $J_\prec: \mathcal{C}^\alpha \times \mathcal{C}^\beta \rightarrow C_2^{\alpha+\beta}$ such that

$$\|J_\prec(X, Y)\|_{\alpha+\beta} \leq C \|\delta X\|_\alpha \|\delta Y\|_\beta, \quad (8.6)$$

for a suitable $C = C(\alpha, \beta, T)$, with the property that, for all $s < u < t$,

$$\delta J_\prec(X, Y)_{sut} = \delta Y_{su} \delta X_{ut}. \quad (8.7)$$

The proof of Proposition 8.5 is postponed to Section 8.9 below.

Remark 8.6. Let $\alpha, \beta \in (0, 1)$ with $\alpha + \beta \leq 1$. Finding a generalised integral of Y in dX for $(X, Y) \in \mathcal{C}^\alpha \times \mathcal{C}^\beta$ as in Definition 8.1 is equivalent to finding $R_{st} \in C_2^{\alpha+\beta}$ such that

$$\delta R_{sut} = \delta Y_{su} \delta X_{ut}, \quad (8.8)$$

$$R \in C_2^{\alpha+\beta}. \quad (8.9)$$

Indeed, if we define $A_{st} := Y_s \delta X_{st}$, relation (8.8) implies that $\delta(A + R) = 0$, hence there exists $I: [0, T] \rightarrow \mathbb{R}$ which satisfies $\delta I = A + R$, which is exactly relation (8.5).

By Proposition 8.5 and Remark 8.6, if $\alpha, \beta \in (0, 1)$ and $\alpha + \beta < 1$, any $(X, Y) \in \mathcal{C}^\alpha \times \mathcal{C}^\beta$ admits an integral I as in Definition 8.1.

8.2. A NEGATIVE RESULT

We show that the usual integral $I(f, g) = \int_0^t f_s g'_s ds$, when $g \in C^1$, cannot be extended to a continuous operator on $\mathcal{C}^{\alpha'} \times \mathcal{C}^{\beta'}$, when $\alpha' + \beta' < 1$.

LEMMA 8.7. Set $[0, T] = [0, 1]$ and define, for $\alpha, \beta \in (0, 1)$,

$$f_n(t) := \frac{1}{n^\alpha} \cos(nt), \quad g_n(t) := \frac{1}{n^\beta} \sin(nt).$$

Then $f_n \rightsquigarrow_\alpha 0$ and $g_n \rightsquigarrow_\beta 0$ (recall Definition 7.15), more precisely:

$$\|f_n\|_\infty \rightarrow 0, \quad \|\delta f_n\|_\alpha \leq 2; \quad \|g_n\|_\infty \rightarrow 0, \quad \|\delta g_n\|_\beta \leq 2. \quad (8.10)$$

(In particular, $f_n \rightarrow 0$ in $\mathcal{C}^{\alpha'}$ and $g_n \rightarrow 0$ in $\mathcal{C}^{\beta'}$ for any $\alpha' < \alpha$ and $\beta' < \beta$.)

However, if we fix $\alpha + \beta \leq 1$, we have $I(f_n, g_n) \not\rightarrow 0$, because

$$\forall t \in [0, 1]: \quad \lim_{n \rightarrow \infty} I(f_n, g_n)_t = \begin{cases} +\infty & \text{if } \alpha + \beta < 1 \\ \frac{1}{2}t & \text{if } \alpha + \beta = 1 \\ 0 & \text{if } \alpha + \beta > 1 \end{cases}.$$

Proof. Note that $\|f_n\|_\infty = n^{-\alpha}$ and $\|f'_n\|_\infty = n^{1-\alpha}$, hence

$$|f_{nt} - f_{ns}| \leq \min \{ \|f'_n\|_\infty |t-s|, 2 \|f_n\|_\infty \} \leq \min \{ n^{1-\alpha} |t-s|, 2 n^{-\alpha} \}.$$

Since $\min \{x, y\} \leq x^\gamma y^{1-\gamma}$, for any $\gamma \in [0, 1]$, choosing $\gamma = \alpha$ we obtain

$$|f_n(t) - f_n(s)| \leq 2^{1-\alpha} |t-s|^\alpha,$$

hence $\|\delta f_n\|_\alpha \leq 2^{1-\alpha} \leq 2$. Similar arguments apply to g_n , proving (8.10).

Next we observe that $\frac{1}{2\pi} \int_0^{2\pi} \cos^2(x) dx = \frac{1}{2\pi} \int_0^{2\pi} \sin^2(x) dx = \frac{1}{2}$. Then, for fixed $t > 0$, as $n \rightarrow \infty$

$$\int_0^{nt} \cos^2(x) dx = \int_0^{2\pi \lfloor \frac{nt}{2\pi} \rfloor} \cos^2(x) dx + O(1) = \frac{1}{2} 2\pi \left\lfloor \frac{nt}{2\pi} \right\rfloor + O(1) = \frac{t}{2} n + O(1).$$

It follows that

$$I(f_n, g_n)_t = \frac{n}{n^{\alpha+\beta}} \int_0^t \cos^2(ns) ds = \frac{1}{n^{\alpha+\beta}} \int_0^{nt} \cos^2(x) dx \sim \frac{t}{2} n^{1-(\alpha+\beta)}. \quad \square$$

8.3. A CHOICE

We have seen in (7.11) above that, given $(X, Y) \in \mathcal{C}^\alpha \times \mathcal{C}^\beta$ with $\alpha + \beta > 1$, we have an *explicit formula* for the remainder $R_{st} = I_t - I_s - Y_s(X_t - X_s)$, given by

$$R_{st} = \int_s^t (Y_u - Y_s) dX_u, \quad 0 \leq s \leq t \leq T, \quad (8.11)$$

where $I_t = \int_0^t Y_u dX_u$ is the *unique* function given by the Young integral of Theorem 7.1. Moreover $R_{st} = \int_s^t (Y_u - Y_s) dX_u$ is the unique function in C_2 which satisfies

$$R \in C_2^{\alpha+\beta}, \quad \delta R_{sut} = \delta Y_{su} \delta X_{ut}, \quad 0 \leq s \leq u \leq t \leq T. \quad (8.12)$$

In the regime $\alpha + \beta < 1$, the Young integral is not available anymore. However by Proposition 8.5 we know that we can find an integral $I \in \mathcal{C}^\alpha$ in the sense of Definition 8.1 by setting

$$\delta I_{st} := Y_s(X_t - X_s) - J_\prec(X, Y)_{st},$$

where J_\prec is the paraintegral of Proposition 8.5, see also Remark 8.6. This shows that, in this setting, the remainder $R_{st} = I_t - I_s - Y_s(X_t - X_s)$ is not given by an explicit formula like (8.11) (which is now ill-defined), rather we have

$$R = -J_\prec(X, Y).$$

However formula (8.11) suggests that we can *define*

$$\int_s^t (Y_u - Y_s) dX_u := R_{st} = -J_{\prec}(X, Y)_{st}, \quad 0 \leq s \leq t \leq T. \quad (8.13)$$

In other words, the left hand side of (8.13) is *chosen* to be equal to the remainder R associated with the integral I as in (8.4). We recall that $R = -J_{\prec}(X, Y)$ satisfies

$$R \in C_2^{\alpha+\beta}, \quad \delta R_{sut} = \delta Y_{su} \delta X_{ut}, \quad 0 \leq s \leq u \leq t \leq T. \quad (8.14)$$

The difference between formula (8.14) and formula (8.12), is that in the former $\alpha + \beta < 1$ while in the latter $\alpha + \beta > 1$. Accordingly, in (8.14) the function R is *not* uniquely determined, while in (8.12) it is.

The comparison between formula (8.14) and formula (8.12), and the explicit expression (8.11) in the case $\alpha + \beta > 1$ show that (8.13) is a reasonable *definition* of the function $(s, t) \mapsto \int_s^t (Y_u - Y_s) dX_u$ in the setting $\alpha + \beta \leq 1$.

We also stress that R in (8.14) *can not be uniquely determined*. Indeed, by Remark 8.3, we have infinitely many possible choices given by

$$R' = R + \delta h, \quad h \in \mathcal{C}^{\alpha+\beta}, h_0 = 0. \quad (8.15)$$

Remark 8.8. In the special case $X = Y$ and $\alpha = \beta \leq \frac{1}{2}$, (8.4) becomes

$$I_0 = 0, \quad \delta I_{st} = X_s \delta X_{st} + R_{st}, \quad |R_{st}| \lesssim |t - s|^{2\alpha}. \quad (8.16)$$

Now the germ is $A_{st} = X_s(X_t - X_s)$ and we have a simple canonical solution which does not rely on the paraintegral and is given by

$$I_t := \frac{1}{2}(X_t^2 - X_0^2), \quad R_{st} := \frac{1}{2}(X_t - X_s)^2,$$

since

$$\underbrace{\frac{1}{2}(X_t^2 - X_s^2)}_{I_t - I_s} = \underbrace{X_s(X_t - X_s)}_{A_{st}} + \underbrace{\frac{1}{2}(X_t - X_s)^2}_{R_{st}}$$

As we have seen in (7.15)-(7.16), if $\alpha > \frac{1}{2}$ then (I, R) is the *only* solution of (8.16) and moreover

$$R_{st} = \int_s^t (X_r - X_s) dX_r$$

where the integral is in the Young sense. If $\alpha \leq \frac{1}{2}$, then we have infinitely many possible solutions (I', R') .

8.4. ONE-DIMENSIONAL ROUGH PATHS

We have seen at the beginning of this chapter that for every $i, j \in \{1, \dots, d\}$, the function $(\mathbb{X}_{st}^2)^{ij}$ plays the role of the remainder R^{ij} associated with a generalised integral I^{ij} of (X^i, X^j) in the sense of Definition 8.1 with $\alpha = \beta < \frac{1}{2}$: in other words the choice of \mathbb{X}^2 is *equivalent* to the choice of integrals (in the sense of Definition 8.1) $I^{ij} \in \mathcal{C}^\alpha$ for all $i, j \in \{1, \dots, d\}$, such that

$$I_0^{ij} = 0, \quad \delta I_{st}^{ij} = X_s^i \delta X_{st}^j + (\mathbb{X}_{st}^2)^{ij}, \quad |(\mathbb{X}_{st}^2)^{ij}| \lesssim |t - s|^{2\alpha},$$

or, in more compact notations,

$$I_0 = 0, \quad \delta I_{st} = X_s \otimes \mathbb{X}_{st}^1 + \mathbb{X}_{st}^2, \quad |\mathbb{X}_{st}^2| \lesssim |t-s|^{2\alpha}. \quad (8.17)$$

Existence of \mathbb{X}^2 satisfying (8.17) with $\alpha < \frac{1}{2}$ is therefore granted by Lemma 8.2, e.g. via the paraintegral of Theorem 8.5. We also know that in the regime $\alpha < \frac{1}{2}$ we have infinitely many possible choices for (I, \mathbb{X}^2) , all of the form (8.15) above.

Suppose first that we are in the setting $d=1$. Then Definition 3.2 becomes

DEFINITION 8.9. *Let $\alpha \in]\frac{1}{3}, \frac{1}{2}]$ and $X: [0, T] \rightarrow \mathbb{R}$ of class \mathcal{C}^α . A α -Rough Path over X is a pair $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2) \in C_2^\alpha \times C_2^{2\alpha}$ such that*

$$\mathbb{X}_{st}^1 = X_t - X_s, \quad \delta \mathbb{X}_{sut}^2 = \mathbb{X}_{su}^1 \mathbb{X}_{ut}^1. \quad (8.18)$$

We recall that the conditions $X \in \mathcal{C}^\alpha$ and $\mathbb{X}^1 = \delta X \in C_2^\alpha$ are equivalent, and that $(\mathbb{X}^1, \mathbb{X}^2) \in C_2^\alpha \times C_2^{2\alpha}$ is equivalent to

$$|\mathbb{X}_{st}^1| \lesssim |t-s|^\alpha, \quad |\mathbb{X}_{st}^2| \lesssim |t-s|^{2\alpha}.$$

We have seen in Chapter 3 that it is possible to build an integration theory for every choice of the α -rough path \mathbb{X} over X . In this theory we can recover existence and uniqueness of the integral function $\int_0^t Y dX$ for a large class of choices of Y . For this we have to give very different roles to the integrator X and to the integrand Y , whereas in the case of the Young integral the two functions play a symmetric role: X will be a component of a rough path and Y a component of a *controlled path*, see Chapter 10.

We note that the algebraic condition $\delta \mathbb{X}_{sut}^2 = \mathbb{X}_{su}^1 \mathbb{X}_{ut}^1$ is *non-linear*, which implies that α -rough paths do not form a vector subspace of $C_2^\alpha \times C_2^{2\alpha}$.

For all $\alpha \in (\frac{1}{3}, \frac{1}{2}]$, given any *real-valued* path $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R})$, there is always a rough path lying above X . Indeed, $I_t := \frac{1}{2} X_t^2$ is a generalised integral of X in dX integral in the sense of Definition 8.1, because

$$\delta I_{st} = \frac{1}{2} (X_t^2 - X_s^2) = X_s \delta X_{st} + \frac{1}{2} (\delta X_{st})^2 = X_s \delta X_{st} + O(|t-s|^{2\alpha}).$$

Then, by Remark 8.8, we can define a rough path \mathbb{X} by setting

$$\mathbb{X}_{st}^2 = \frac{1}{2} (\delta X_{st})^2. \quad (8.19)$$

More directly, note that (8.19) satisfies the Chen relation (8.21), and clearly $\mathbb{X}^2 \in C_2^{2\alpha}$.

8.5. THE VECTOR CASE

Let us consider now a *vector valued* path $X: [0, T] \rightarrow \mathbb{R}^d$, with $X_t = (X_t^1, \dots, X_t^d)$. We suppose that X is of class \mathcal{C}^α , namely that $X^i \in \mathcal{C}^\alpha$ for all $i = 1, \dots, d$, with $\alpha > \frac{1}{3}$.

We can now generalise Definition 8.9 to the vector case. The multi-dimensional case $d \geq 2$ is sensibly richer, because off-diagonal terms $\int X^i dX^j$ with $i \neq j$ do not have explicit candidates as in (8.19).

DEFINITION 8.10. Let $\alpha \in]\frac{1}{3}, \frac{1}{2}]$, $d \geq 1$ and $X: [0, T] \rightarrow \mathbb{R}^d$ of class \mathcal{C}^α . A α -Rough Path on \mathbb{R}^d over X is a pair $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$, with

- $\mathbb{X}^1 = (\delta X^i)_{i=1, \dots, d} \in C_2^\alpha([0, T]; \mathbb{R}^d)$
- $\mathbb{X}^2 = (R^{ij})_{i, j=1, \dots, d} \in C_2^{2\alpha}([0, T]_<^2; \mathbb{R}^d \otimes \mathbb{R}^d)$

such that

$$(\delta \mathbb{X}_{su}^2)^{ij} = (\mathbb{X}_{su}^1)^i (\mathbb{X}_{ut}^1)^j, \quad (8.20)$$

or equivalently

$$\mathbb{X}_{st}^2 - \mathbb{X}_{su}^2 - \mathbb{X}_{ut}^2 = \mathbb{X}_{su}^1 \otimes \mathbb{X}_{ut}^1. \quad (8.21)$$

We denote by $\mathcal{R}_{\alpha, d}$ the space of α -rough paths on \mathbb{R}^d and by $\mathcal{R}_{\alpha, d}(X)$ the set of α -rough paths over X .

The condition (8.20)-(8.21) is the celebrated *Chen relation*. As in the one-dimensional case, existence of \mathbb{X}^2 satisfying (8.20)-(8.21) with $\alpha < \frac{1}{2}$ is therefore granted by Lemma 8.2, e.g. via the paraintegral of Theorem 8.5. We also know that in the regime $\alpha < \frac{1}{2}$ we have infinitely many possible choices for (I, \mathbb{X}^2) , all of the form (8.15) above.

We are going to see in Chapter 10 that it is possible to build an integration theory for every choice of an α -rough path \mathbb{X} . Again, we note that the condition (8.20)-(8.21) is *non-linear*, which implies that α -rough paths do not form a vector space.

The following exercise is a simple summary of the discussion at the beginning of this chapter.

Exercise 8.1. Given a α -rough path $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ over X in \mathbb{R}^d , a process $I \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d \otimes \mathbb{R}^d)$ satisfying (8.17) is a generalised integral of X in dX in the sense of Definition 8.1.

Viceversa, given $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$ and an integral $I \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d \otimes \mathbb{R}^d)$ of X in dX , in the sense of Definition 8.1, defining \mathbb{X}^2 by (8.17) we obtain a α -rough path $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ over X in \mathbb{R}^d .

In the multi-dimensional case $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$ with $d \geq 2$, building a rough path over X is non-trivial, because one has to define off-diagonal integrals $\int X^i dX^j$ for $i \neq j$. However, by the results we have proved on the existence of the paraintegral in Proposition 8.5, we can easily deduce the following.

PROPOSITION 8.11. For any $d \in \mathbb{N}$, $\alpha \in (\frac{1}{3}, \frac{1}{2})$ and $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$, there is a α -rough path \mathbb{X} which lies above X (hence, by Lemma 8.15, there are infinitely many of them).

Proof. For any fixed $i, j \in \{1, \dots, d\}$, let I^{ij} be a generalised integral of X^i in dX^j in the sense of Definition 8.1, whose existence is guaranteed by the paraintegral of Proposition 8.5. Then, by Exercise 8.1, defining \mathbb{X}^2 by (8.17) we obtain a rough path \mathbb{X} which lies above X . \square

We conclude with an elementary observation, that will be useful later. By Exercise 8.1, any α -rough path \mathbb{X} over $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$ determines an integral I of (X, X) , given by (8.17). Applying the latter relation in a telescopic fashion, we can write

$$I_t = \sum_{[t_i, t_{i+1}] \in \mathcal{P}} (X_{t_i} \delta X_{t_i t_{i+1}} + \mathbb{X}_{t_i t_{i+1}}^2), \quad (8.22)$$

where $\mathcal{P} = \{0 = t_0 < t_1 < \dots < t_k = t\}$ is an arbitrary partition of $[0, t]$. We will see in Chapter 10 below that a generalization of (8.22), when we also take the limit of vanishing mesh $|\mathcal{P}| \rightarrow 0$, is the correct recipe for building “Riemann-sums”, in order to define a generalised integral of h in dX in the sense of Definition 8.1 for a wide class of functions h .

8.6. DISTANCE ON ROUGH PATHS

We denote by $\mathcal{R}_{\alpha, d}$ the set of all α -rough paths in \mathbb{R}^d . For $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2) \in \mathcal{R}_{\alpha, d}$ we set

$$\|\mathbb{X}\|_{\mathcal{R}_{\alpha, d}} := \|\mathbb{X}^1\|_\alpha + \|\mathbb{X}^2\|_{2\alpha} = \sup_{0 \leq s < t \leq T} \frac{|\mathbb{X}_{st}^1|}{|t-s|^\alpha} + \sup_{0 \leq s < t \leq T} \frac{|\mathbb{X}_{st}^2|}{|t-s|^{2\alpha}}. \quad (8.23)$$

We stress that $\mathcal{R}_{\alpha, d}$ is not a vector space, because the Chen relation (8.21) is not linear. However, it is meaningful to define for $\mathbb{X}, \bar{\mathbb{X}} \in \mathcal{R}_{\alpha, d}$

$$d_{\mathcal{R}_{\alpha, d}}(\mathbb{X}, \bar{\mathbb{X}}) := \|\mathbb{X}^1 - \bar{\mathbb{X}}^1\|_\alpha + \|\mathbb{X}^2 - \bar{\mathbb{X}}^2\|_{2\alpha}. \quad (8.24)$$

Exercise 8.2. $d_{\mathcal{R}_{\alpha, d}}$ is a distance on $\mathcal{R}_{\alpha, d}$.

When we talk of convergence in $\mathcal{R}_{\alpha, d}$, we mean with respect to the distance $d_{\mathcal{R}_{\alpha, d}}$. Note that $d_{\mathcal{R}_{\alpha, d}}$ is equal on $\mathcal{R}_{\alpha, d}$ to the distance induced by the natural norm $\|F\|_\alpha + \|G\|_{2\alpha}$ for $(F, G) \in C_2^\alpha \times C_2^{2\alpha}$. In particular $\mathbb{X}_n = (\mathbb{X}_n^1, \mathbb{X}_n^2) \rightarrow \mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ in $\mathcal{R}_{\alpha, d}$ if and only if $\mathbb{X}_n^1 \rightarrow \mathbb{X}^1$ in C_2^α and $\mathbb{X}_n^2 \rightarrow \mathbb{X}^2$ in $C_2^{2\alpha}$.

LEMMA 8.12. *The metric space $(\mathcal{R}_{\alpha, d}, d_{\mathcal{R}_{\alpha, d}})$ is complete.*

Proof. Let $(\mathbb{X}_n)_{n \in \mathbb{N}} \subset \mathcal{R}_{\alpha, d}$ be a Cauchy sequence. Then, by definition of $d_{\mathcal{R}_{\alpha, d}}$, for every $\epsilon > 0$ there is $\bar{n}_\epsilon < \infty$ such that for all $n, m \geq \bar{n}_\epsilon$ and $0 \leq s < t \leq T$

$$|\mathbb{X}_n^1(s, t) - \mathbb{X}_m^1(s, t)| \leq \epsilon |t-s|^\alpha, \quad |\mathbb{X}_n^2(s, t) - \mathbb{X}_m^2(s, t)| \leq \epsilon |t-s|^{2\alpha}. \quad (8.25)$$

Note that

$$d_{\mathcal{R}_{\alpha, d}}(\mathbb{X}, \bar{\mathbb{X}}) \geq \frac{\|\mathbb{X}^1 - \bar{\mathbb{X}}^1\|_\infty}{T^\alpha} + \frac{\|\mathbb{X}^2 - \bar{\mathbb{X}}^2\|_\infty}{T^{2\alpha}}.$$

It follows that the sequences of continuous functions $(\mathbb{X}_n^1)_{n \in \mathbb{N}}$ and $(\mathbb{X}_n^2)_{n \in \mathbb{N}}$ are Cauchy in the sup-norm, hence there are continuous functions \mathbb{X}^1 and \mathbb{X}^2 such that $\|\mathbb{X}_n^1 - \mathbb{X}^1\|_\infty \rightarrow 0$ and $\|\mathbb{X}_n^2 - \mathbb{X}^2\|_\infty \rightarrow 0$. In particular, we have pointwise convergence $\mathbb{X}_m^1(s, t) \rightarrow \mathbb{X}^1(s, t)$ and $\mathbb{X}_m^2(s, t) \rightarrow \mathbb{X}^2(s, t)$ as $m \rightarrow \infty$. Taking this limit in (8.25) shows that $d_{\mathcal{R}_{\alpha, d}}(\mathbb{X}_n, \mathbb{X}) \leq 2\epsilon$ for all $n \geq \bar{n}_\epsilon$. \square

This allows to rephrase the continuity result of section 3.7. We fix

$$D \geq \|\nabla \sigma\|_\infty + \|\nabla^2 \sigma\|_\infty + \|\nabla^3 \sigma\|_\infty + \|\nabla \sigma_2\|_\infty + \|\nabla^2 \sigma_2\|_\infty.$$

We obtain from Proposition 3.11

PROPOSITION 8.13. *We suppose that $\alpha \in (\frac{1}{3}, \frac{1}{2}]$ and $\sigma: \mathbb{R}^k \rightarrow \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ is of class C^3 , with $\|\nabla \sigma\|_\infty + \|\nabla^2 \sigma\|_\infty + \|\nabla^3 \sigma\|_\infty + \|\nabla \sigma_2\|_\infty + \|\nabla^2 \sigma_2\|_\infty < +\infty$ (without boundedness assumptions on σ and σ_2). For $\mathbb{X} \in \mathcal{R}_{\alpha,d}$ and $Z_0 \in \mathbb{R}^k$ we denote by $Z: [0, T] \rightarrow \mathbb{R}^k$ the unique solution to equation (3.19)*

$$Z_{st}^{[3]} = o(t-s), \quad Z_{st}^{[3]} = \delta Z_{st} - \sigma(Z_s) \mathbb{X}_{st}^1 - \sigma_2(Z_s) \mathbb{X}_{st}^2,$$

Then the map $\mathbb{R}^k \times \mathcal{R}_{\alpha,d} \ni (Z_0, \mathbb{X}) \mapsto Z \in \mathcal{C}^\alpha$ is locally Lipschitz continuous.

8.7. CANONICAL ROUGH PATHS FOR $\alpha > \frac{1}{2}$

Let $\frac{1}{3} < \alpha' \leq \frac{1}{2} < \alpha < 1$. Then it is well known that $\mathcal{C}^\alpha \subset \mathcal{C}^{\alpha'}$. Therefore, if $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$ we have in particular $X \in \mathcal{C}^{\alpha'}([0, T]; \mathbb{R}^d)$ and therefore there is a α' -rough path \mathbb{X} over X . However, is there a α -rough path over X ? Note that we have restricted Definition 8.10 to the range $\alpha \in (\frac{1}{3}, \frac{1}{2}]$, while here we are discussing the existence of $\mathbb{X}^2: [0, T]_{\leq}^2 \rightarrow \mathbb{R}^d \otimes \mathbb{R}^d$ satisfying the Chen relation (8.21) and

$$|\mathbb{X}_{st}^2| \lesssim |t-s|^{2\alpha}$$

where now $\alpha > \frac{1}{2}$.

LEMMA 8.14. *Let $\alpha \in (\frac{1}{2}, 1]$. For every $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$, there is a unique $\mathbb{X}^2: [0, T]_{\leq}^2 \rightarrow \mathbb{R}^d \otimes \mathbb{R}^d$ satisfying the Chen relation (8.21) and such that $\mathbb{X}^2 \in C_2^{2\alpha}$. We have the explicit formula*

$$\mathbb{X}_{st}^2 = \int_s^t \mathbb{X}_{su}^1 \otimes dX_u, \quad \mathbb{X}_{st}^1 = \delta X_{st}, \quad 0 \leq s \leq t \leq T, \quad (8.26)$$

where the integral is in the Young sense. Moreover the map $\mathcal{C}^\alpha \ni X \mapsto \mathbb{X}^2 \in C_2^{2\alpha}$ is continuous (in particular, locally Lipschitz-continuous).

Proof. It is easy to check that \mathbb{X}^2 in (8.26) satisfies the Chen relation (8.18), thanks to the bi-linearity of the Young integral. Indeed, we can rewrite (8.26) as

$$\mathbb{X}_{st}^2 = \int_s^t X_u \otimes dX_u - X_s \otimes (X_t - X_s), \quad (8.27)$$

hence for $s \leq u \leq t$ we have that

$$\begin{aligned} (\delta \mathbb{X}^2)_{sut} &= -X_s \otimes (X_t - X_s) + X_s \otimes (X_u - X_s) + X_u \otimes (X_t - X_u) \\ &= -X_s \otimes (X_t - X_u) + X_u \otimes (X_t - X_u) \\ &= \delta X_{su} \otimes \delta X_{ut}. \end{aligned}$$

We show now that $\mathbb{X}^2 \in C_2^{2\alpha}$. We recall that the Young integral satisfies the following key estimate, for $f \in \mathcal{C}^\alpha$ and $g \in \mathcal{C}^\beta$ with $\alpha + \beta > 1$:

$$\left| \int_s^t f \, dg - f_s (g_t - g_s) \right| \leq c_{\alpha+\beta} |t-s|^{\alpha+\beta}.$$

Choosing $f = X^i$ and $g = X^j$ shows that \mathbb{X}^2 , given by (8.27), is $O(|t-s|^{2\alpha})$. Finally, we prove the continuity of $\mathcal{C}^\alpha \ni X \mapsto \mathbb{X}^2 \in C_2^{2\alpha}$. Given $X, \bar{X} \in \mathcal{C}^\alpha$ and the respective $\mathbb{X}^2, \bar{\mathbb{X}}^2 \in C_2^{2\alpha}$, we have

$$\mathbb{X}_{st}^2 - \bar{\mathbb{X}}_{st}^2 = \int_s^t (\mathbb{X}_{su}^1 - \bar{\mathbb{X}}_{su}^1) \otimes dX_u + \int_s^t \bar{\mathbb{X}}_{su}^1 \otimes d(\bar{X} - \bar{X})_u,$$

with all integrals in the Young sense. Then by the Sewing Lemma

$$\|\mathbb{X}^2 - \bar{\mathbb{X}}^2\|_{2\alpha} \leq K_{2\alpha} (\|\delta X\|_\alpha + \|\delta \bar{X}\|_\alpha) \|\delta X - \delta \bar{X}\|_\alpha.$$

The proof is complete. \square

Therefore, we could extend Definition 8.10 to α -rough paths for $\alpha \in (\frac{1}{3}, 1]$. For $\alpha \in (\frac{1}{2}, 1]$ and $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$ there is a unique α -rough path over X , which we call the *canonical rough path* over X .

While for $\alpha > \frac{1}{2}$ there is a unique rough path lying above a given path $X \in \mathcal{C}^\alpha$, for $\alpha \leq \frac{1}{2}$ there are infinitely many of them, that can be characterized explicitly.

LEMMA 8.15. *Let $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ be a α -rough path in \mathbb{R}^d , with $\alpha \in (\frac{1}{3}, \frac{1}{2}]$. Then $\bar{\mathbb{X}} = (\mathbb{X}^1, \bar{\mathbb{X}}^2)$ is a α -rough path if and only if for some $f \in \mathcal{C}^{2\alpha}([0, T]; \mathbb{R}^d \otimes \mathbb{R}^d)$ one has $\bar{\mathbb{X}}^2 = \mathbb{X}^2 + \delta f$, that is*

$$\bar{\mathbb{X}}_{st}^2 = \mathbb{X}_{st}^2 + f_t - f_s, \quad 0 \leq s \leq t \leq T.$$

Proof. By assumption \mathbb{X}^2 and $\bar{\mathbb{X}}^2$ satisfy the Chen relation (8.21). If $\bar{\mathbb{X}}^2 = \mathbb{X}^2 + \delta f$ then $\mathbb{X}^2 \in C_2^{2\alpha}$ if and only if $\delta \mathbb{X}^2 = \delta \bar{\mathbb{X}}^2$ and $\bar{\mathbb{X}}^2 \in C_2^{2\alpha}$. Therefore, if \mathbb{X} is a α -rough path then so is $\bar{\mathbb{X}}$.

Viceversa, if $\bar{\mathbb{X}}$ is a α -rough path, then $\delta \mathbb{X}^2 = \delta \bar{\mathbb{X}}^2$ because both \mathbb{X} and $\bar{\mathbb{X}}$ satisfy the Chen relation (8.21) with the same \mathbb{X}^1 , hence $\bar{\mathbb{X}}^2 = \mathbb{X}^2 + \delta f$ for some f . Since both $\mathbb{X}^2, \bar{\mathbb{X}}^2$ belong to $C_2^{2\alpha}$, then also $\delta f \in C_2^{2\alpha}$, which is the same as $f \in \mathcal{C}^{2\alpha}$. \square

Remark 8.16. We mainly work with α -Hölder rough paths for $\alpha \in (\frac{1}{3}, \frac{1}{2})$, excluding the boundary case $\alpha = \frac{1}{2}$ for technical reasons. Let us stress that, by doing so, *we are not throwing away any rough paths, but only giving up a tiny amount of regularity*, because any $\frac{1}{2}$ -rough path is a α -rough path, for any $\alpha < \frac{1}{2}$.

To summarize, the situation is the following:

1. For $\alpha \in (\frac{1}{2}, 1]$ and $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$ there is a unique α -rough path over X
2. For $\alpha \in (\frac{1}{3}, \frac{1}{2})$ and $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$, there are infinitely many α -rough paths over X

3. For $\alpha = \frac{1}{2}$, either there is no α -rough path over X , or there are infinitely many of them.

In the range $\alpha \in (\frac{1}{2}, 1]$, the unique α -rough path \mathbb{X} above X can be called the *canonical rough path* over X . We let $\mathcal{R}_{1,d}$ be the set of all canonical rough paths over paths $X \in C^1$ (see Lemma 8.14).

8.8. LACK OF CONTINUITY

We have seen in Lemma 8.14 that, for $\alpha > \frac{1}{2}$, the map $\mathcal{C}^\alpha \ni X \mapsto \mathbb{X}^2 \in C_2^{2\alpha}$ is continuous. It is a crucial fact that this continuity property can *not* be extended to $\alpha \leq \frac{1}{2}$, as shown by the next example.

For $n \in \mathbb{N}$ consider the smooth paths $X_n^1, X_n^2: [0, 1] \rightarrow \mathbb{R}$

$$X_n^1(t) := \frac{1}{\sqrt{n}} \cos(nt), \quad X_n^2(t) := \frac{1}{\sqrt{n}} \sin(nt).$$

We have already shown in Lemma 8.7 that $X_n^1 \rightarrow 0$ and $X_n^2 \rightarrow 0$ in \mathcal{C}^α , for all $\alpha \in (0, \frac{1}{2})$. More precisely, we have shown that $X_n^1 \rightsquigarrow_{\frac{1}{2}} 0$ and $X_n^2 \rightsquigarrow_{\frac{1}{2}} 0$, by showing that $\|\delta X_n^1\|_{\frac{1}{2}} \leq 2$, $\|\delta X_n^2\|_{\frac{1}{2}} \leq 2$ for all $n \in \mathbb{N}$ and, obviously, $\|X_n^1\|_\infty \rightarrow 0$, $\|X_n^2\|_\infty \rightarrow 0$. Next we set

$$I_n^{ij}(t) := \int_0^t X_n^i(u) dX_n^j(u), \quad \text{for } i, j \in \{1, 2\},$$

and correspondingly

$$\begin{aligned} (\mathbb{X}_n^2)_{st}^{ij} &= \\ &= \int_s^t (X_n^i(u) - X_n^i(s)) dX_n^j(u) = I_n^{ij}(t) - I_n^{ij}(s) - X_n^i(s)(X_n^j(t) - X_n^j(s)). \end{aligned} \tag{8.28}$$

It is not difficult to show that $(\mathbb{X}_n^2)_{st}^{ij} \rightarrow (\mathbb{X}^2)_{st}^{ij}$ in C_2^θ , for any $\theta \in (0, 1)$, where we define

$$(\mathbb{X}^2)_{st}^{ij} = \begin{pmatrix} 0 & \frac{t-s}{2} \\ -\frac{t-s}{2} & 0 \end{pmatrix} = \begin{cases} \frac{t-s}{2} & \text{if } i=1, j=2 \\ -\frac{t-s}{2} & \text{if } i=2, j=1 \\ 0 & \text{if } i=j \end{cases}. \tag{8.29}$$

As a consequence, for any $\alpha \in (\frac{1}{3}, \frac{1}{2})$, we have $\mathbb{X}_n^1 \rightarrow 0$ in \mathcal{C}^α and $\mathbb{X}_n^2 \rightarrow \mathbb{X}^2$ in $C_2^{2\alpha}$, that is *the canonical rough path* $(\mathbb{X}_n^1, \mathbb{X}_n^2)$ *converge in* $\mathcal{R}_{\alpha,d}$ *to the rough path* $(0, \mathbb{X}^2)$.

Let us prove that $(\mathbb{X}_n^2)_{st}^{ij} \rightarrow (\mathbb{X}^2)_{st}^{ij}$ in C_2^θ , for any $\theta \in (0, 1)$. We have already shown the pointwise (actually uniform) convergence $I_n^{12}(t) \rightarrow \frac{1}{2}t$. With similar arguments, one shows the uniform convergence $I_n^{ij} \rightarrow I^{ij}$ defined by

$$I^{ij}(t) = \begin{pmatrix} 0 & \frac{t}{2} \\ -\frac{t}{2} & 0 \end{pmatrix} = \begin{cases} \frac{t}{2} & \text{if } i=1, j=2 \\ -\frac{t}{2} & \text{if } i=2, j=1 \\ 0 & \text{if } i=j \end{cases}.$$

It follows by (8.28) that we have the uniform convergence $(\mathbb{X}_n^2)_{st}^{ij} \rightarrow I^{ij}(t) - I^{ij}(s) = (\mathbb{X}^2)_{st}^{ij}$. To prove convergence in C_2^θ , it suffices to show a uniform ‘‘Lipschitz-like’’ bound $|(\mathbb{X}_n^2)_{st}^{ij}| \leq 2|t - s|$, which is easy:

$$\begin{aligned} |(\mathbb{X}_n^2)_{st}^{ij}| &\leq \int_s^t |X_n^i(u) - X_n^i(s)| |(X_n^j)'(u)| du \\ &\leq 2\|X_n^i\|_\infty \|(X_n^j)'\|_\infty |t - s| \\ &= 2\frac{1}{\sqrt{n}} \frac{n}{\sqrt{n}} |t - s| \\ &= 2|t - s|. \end{aligned}$$

8.9. PROOF OF PROPOSITION 8.5

Given continuous functions $X, Y: [0, T] \rightarrow \mathbb{R}$, let us define $R^1, R^2 \in C_2$

$$R^1(X, Y)_{st} := -Y_s \delta X_{st}, \quad R^2(X, Y)_{st} := X_t \delta Y_{st}, \quad 0 \leq s \leq t \leq T, \quad (8.30)$$

and note that

$$R_{st}^2 = R_{st}^1 + \delta(XY)_{st}.$$

Recalling Remark 8.6, it is easy to check that R^1 and R^2 satisfy

$$\delta R^1(X, Y)_{sut} = \delta R^2(X, Y)_{sut} = \delta Y_{su} \delta X_{ut}. \quad (8.31)$$

However, neither R^1 nor R^2 are in $C_2^{\alpha+\beta}$ in general, because we can only estimate

$$\|R^1\|_\alpha \leq \|Y\|_\infty \|\delta X\|_\alpha, \quad \|R^2\|_\beta \leq \|X\|_\infty \|\delta Y\|_\beta. \quad (8.32)$$

We are going to show that, by combining R^1 and R^2 in a suitable way, one can build R which satisfies both (8.8) and (8.9). This yields the existence of an integral.

We start with a technical approximation lemma.

LEMMA 8.17. *Given $f \in \mathcal{C}^\alpha$, there is a sequence $(\tilde{f}_n)_n \subset C^\infty$ such that*

$$f(x) = f(0) + \sum_{n \geq 0} \tilde{f}_n(x), \quad \forall x \in [0, T]. \quad (8.33)$$

One can choose \tilde{f}_n so that for every $n \geq 0$

$$\|\tilde{f}_n\|_\infty \leq C \|\delta f\|_\alpha 2^{-n\alpha}, \quad \|\tilde{f}'_n\|_\infty \leq C \|\delta f\|_\alpha 2^{n(1-\alpha)}, \quad (8.34)$$

where $C \in (0, \infty)$ depends only on T (e.g. one can take $C = 2(T^\alpha + 1)$).

Proof. We may assume without loss of generality that $f(x) = 0$ (it suffices to redefine $f(x)$ as $f(x) - f(0)$, which does not change $\|\delta f\|_\alpha$.)

We extend $f: \mathbb{R} \rightarrow \mathbb{R}$ (e.g. with $f(x) := f(0)$ for $x \leq 0$ and $f(x) := f(T)$ for $x \geq T$) so that $\|f\|_\alpha$ is not changed. Then we fix a probability density $\phi: [-1, 1] \rightarrow [0, \infty)$ with $\phi \in C^1$ and for $n \geq 0$ we define the rescaled density

$$\phi_n(x) := 2^n \phi(2^n x).$$

Next, for $n \geq 0$, we set $f_n(x) := (f * \phi_n)(x)$, that is

$$\begin{aligned} f_n(x) &:= \int_{\mathbb{R}} f(z) \phi_n(x-z) dz = \int_{\mathbb{R}} f(x-z) \phi_n(z) dz \\ &= \int_{\mathbb{R}} f(x - \frac{z}{2^n}) \phi(z) dz. \end{aligned} \quad (8.35)$$

It is easy to check that $\|f_n - f\|_{\infty} \rightarrow 0$. Next we define

$$\tilde{f}_0(x) := f_0(x), \quad \text{for } k \geq 1: \quad \tilde{f}_k(x) := f_k(x) - f_{k-1}(x).$$

Note that $\sum_{k=0}^n \tilde{f}_k = f_n$, hence relation (8.33) is proved (we recall that $f(0) = 0$).

We now prove the first relation in (8.34). Since $f(0) = 0$, for all $x \in [0, T]$ we can write

$$\begin{aligned} |\tilde{f}_0(x)| &= |f_0(x)| \leq \int_{\mathbb{R}} |f(x-z)| \phi(z) dz = \int_{\mathbb{R}} |f(x-z) - f(0)| \phi(z) dz \\ &\leq \|\delta f\|_{\alpha} \int_{\mathbb{R}} |x-z|^{\alpha} \phi(z) dz \leq (T^{\alpha} + 1) \|\delta f\|_{\alpha}, \end{aligned}$$

where for the last inequality we have used $(x+y)^{\alpha} \leq x^{\alpha} + y^{\alpha}$ (for $\alpha < 1$ and $x, y \geq 0$), $x \leq T$ and $\int_{\mathbb{R}} |z|^{\alpha} \phi(z) dz \leq \int_{[-1,1]} \phi(z) dz = 1$, because ϕ is a density supported on $[-1, 1]$. For $k \geq 1$ we estimate

$$\begin{aligned} |\tilde{f}_k(x)| &= |f_k(x) - f_{k-1}(x)| \\ &\leq \int_{\mathbb{R}} |f(x - \frac{z}{2^k}) - f(x - \frac{z}{2^{k-1}})| \phi(z) dz \\ &\leq 2^{-k\alpha} \|\delta f\|_{\alpha} \end{aligned}$$

again because $\int_{\mathbb{R}} |z|^{\alpha} \phi(z) dz \leq 1$. We have proved the first relation in (8.34).

We finally prove the second relation in (8.34). Note that

$$f'_n(x) = \int_{\mathbb{R}} f(z) \phi'_n(x-z) dz = 2^n \int_{\mathbb{R}} f(x - \frac{z}{2^n}) \phi'(z) dz,$$

which has the same form as $f_n(x)$, see the last integral in (8.35), just with an extra multiplicative factor 2^n and with ϕ replaced by ϕ' . Arguing as before, we obtain

$$\begin{aligned} |\tilde{f}'_0(x)| &= |f'_0(x)| \leq (T^{\alpha} + 1) \left(\int_{[-1,1]} |\phi'(z)| dz \right) \|\delta f\|_{\alpha}, \\ |\tilde{f}'_k(x)| &= |f'_k(x) - f'_{k-1}(x)| \leq 2^{k(1-\alpha)} \left(\int_{[-1,1]} |\phi'(z)| dz \right) \|\delta f\|_{\alpha}, \end{aligned}$$

for $k \geq 1$. We can choose ϕ to be symmetric, decreasing on $[0, 1]$, with $\phi(0) = 1$ and $\phi(1) = 0$, so that

$$\int_{[-1,1]} |\phi'(z)| dz = 2 \int_0^1 (-\phi'(z)) dz = 2 (\phi(0) - \phi(1)) = 2,$$

and this completes the proof. \square

Proof of Proposition 8.5. The existence of an integral is an immediate consequence of Remark 8.6, because if we define $R_{st} := J_{\prec}(X, Y)_{st}$, then both relations (8.8) and (8.9) are satisfied.

It remains to build J_\prec . Let us write, applying Lemma 8.17,

$$X(x) = X(0) + \sum_{m \geq 0} \tilde{X}_n(x), \quad Y(x) = Y(0) + \sum_{n \geq 0} \tilde{Y}_m(x).$$

Recalling (8.30), we define

$$J_\prec(X, Y) := \sum_{0 \leq m \leq n} R^1(\tilde{X}_n, \tilde{Y}_m) + \sum_{0 \leq n < m} R^2(\tilde{X}_n, \tilde{Y}_m). \quad (8.36)$$

We show below that the series converge uniformly. Note that $\sum_{n \geq 0} \tilde{X}_n(x) = X(x) - X(0)$, hence $\sum_{n \geq 0} \delta \tilde{X}_n = \delta(X - X(0)) = \delta X$, and similarly for Y . Applying (8.31), we get

$$\begin{aligned} \delta J_\prec(X, Y)_{st} &= \sum_{0 \leq m \leq n} (\delta \tilde{Y}_n)_{su} (\delta \tilde{X}_m)_{ut} + \sum_{0 \leq n < m} (\delta \tilde{Y}_n)_{su} (\delta \tilde{X}_m)_{ut} \\ &= \left(\sum_{n \geq 0} (\delta \tilde{Y}_n)_{su} \right) \left(\sum_{m \geq 0} (\delta \tilde{X}_m)_{ut} \right) = \delta Y_{su} \delta X_{ut}, \end{aligned}$$

which proves (8.7). We now prove (8.6). Note that, by (8.34),

$$|(\delta \tilde{X}_n)_{st}| \leq \|\tilde{X}'_n\|_\infty |t - s| \leq C \|\delta X\|_\alpha 2^{-\alpha n} (2^n |t - s|),$$

but at the same time, always by (8.34),

$$|(\delta \tilde{X}_n)_{st}| \leq |\tilde{X}_n(s)| + |\tilde{X}_n(t)| \leq 2 \|\tilde{X}_n\|_\infty \leq 2C \|\delta X\|_\alpha 2^{-\alpha n}.$$

Altogether, using the notation $x \wedge y := \min\{x, y\}$,

$$|(\delta \tilde{X}_n)_{st}| \leq 2C \|\delta X\|_\alpha 2^{-\alpha n} (2^n |t - s| \wedge 1).$$

Similarly

$$|(\delta \tilde{Y}_m)_{st}| \leq 2C \|\delta Y\|_\beta 2^{-\beta m} (2^m |t - s| \wedge 1).$$

Recalling (8.30) and applying again (8.34), we get

$$\begin{aligned} |R^1(\tilde{X}_n, \tilde{Y}_m)_{st}| &\leq \|\tilde{Y}_m\|_\infty |(\delta \tilde{X}_n)_{st}| \\ &\leq 2C^2 \|\delta X\|_\alpha \|\delta Y\|_\beta 2^{-\alpha n} 2^{-\beta m} (2^n |t - s| \wedge 1). \end{aligned}$$

and similarly

$$\begin{aligned} |R^2(\tilde{X}_n, \tilde{Y}_m)_{st}| &\leq \|\tilde{X}_n\|_\infty |(\delta \tilde{Y}_m)_{st}| \\ &\leq 2C^2 \|\delta X\|_\alpha \|\delta Y\|_\beta 2^{-\alpha n} 2^{-\beta m} (2^m |t - s| \wedge 1) \end{aligned}$$

These relations show that the series in (8.36) converge indeed uniformly. We now plug these estimates into (8.36), getting

$$\begin{aligned} |J_\prec(X, Y)_{st}| &\leq 2C^2 \|\delta X\|_\alpha \|\delta Y\|_\beta \left(\sum_{0 \leq m \leq n} 2^{-\alpha n} 2^{-\beta m} (2^n |t - s| \wedge 1) \right. \\ &\quad \left. + \sum_{0 \leq n < m} 2^{-\alpha n} 2^{-\beta m} (2^n |t - s| \wedge 1) \right). \end{aligned} \quad (8.37)$$

Let us set for convenience

$$\bar{k} = \bar{k}_{st} := \log_2 \frac{1}{|t-s|},$$

so that $2^m|t-s| \leq 2$ if and only if $m \leq \bar{k}$. Since $\sum_{n=m}^{\infty} 2^{-\alpha n} \leq \frac{1}{1-2^{-\alpha}} 2^{-\alpha m}$, the first sum in (8.37) can be bounded as follows (neglecting the prefactor $(1-2^{-\alpha})^{-1}$):

$$\begin{aligned} \sum_{m \geq 0} 2^{-(\alpha+\beta)m} (2^m|t-s| \wedge 1) &\leq |t-s| \sum_{\substack{0 \leq m < \bar{k} \\ 2^{(1-\alpha-\beta)\bar{k}}}} 2^{(1-\alpha-\beta)m} + \sum_{m \geq \bar{k}} 2^{-(\alpha+\beta)m} \\ &\leq |t-s| \frac{2^{(1-\alpha-\beta)\bar{k}}}{2^{1-\alpha-\beta}-1} + \frac{2^{-(\alpha+\beta)\bar{k}}}{1-2^{-(\alpha+\beta)}} \\ &\leq \left\{ \frac{1}{2^{1-\alpha-\beta}-1} + \frac{1}{1-2^{-(\alpha+\beta)}} \right\} |t-s|^{\alpha+\beta}. \end{aligned}$$

The same estimates apply to the second sum in (8.37), hence (8.6) is proved. \square

Remark 8.18. In the previous proof, if $\alpha + \beta = 1$, then we have

$$\sum_{0 \leq m < \bar{k}} \underbrace{2^{(1-\alpha-\beta)m}}_{=1} = \bar{k} = \log_2 \frac{1}{|t-s|}$$

and therefore we obtain, instead of (8.6), that

$$|J_{\prec}(f, g)|_{st} \lesssim |t-s| \log \frac{1}{|t-s|}, \quad 0 \leq s < t \leq T.$$