
Chapter 9
Geometric rough paths

9.1. Geometric rough paths
We recall that the set of smooth paths C1 is not dense in Cα, but its closure is quite
large, because it contains Cα′ for all α ′>α. The situation is different for rough paths:
the set R1,d of canonical rough paths over smooth paths is again not dense in Rα,d,
but its closure is a significantly smaller set, that we now describe.

Definition 9.1. The closure of R1,d in Rα,d for α∈
]1
3
, 1
]
is denoted by Rα,d

g and
its elements are called geometric rough paths.

For smooth paths f , g ∈C1, the integration by parts formula holds:
∫

s

t

f(u) dg(u)= f(t)g(t)− f(s)g(s)−
∫

s

t

g(u) df(u) .

It follows that
∫

s

t

(f(u)− f(s)) dg(u)+
∫

s

t

(g(u)− g(s)) df(u)= (f(t)− f(s))(g(t)− g(s)) .

We have seen in Proposition 7.7 that the same formula holds if (f , g)∈Cα×Cβ with
α+ β> 1 and the integral is in the Young sense.

Given a smooth path X ∈C1, define X2 by (8.26) as an ordinary integral (i.e.
(X1,X2) is the canonical rough path over X). The previous relation for f =Xi and
g=Xj shows that

(Xst
2 )ij+(Xst

2 )ji=(Xst
1 )i(Xst

1 )j . (9.1)

This relation is called the shuffle relation: for i= j it identifies Xii
2 in terms of Xi:

(Xst
2 )ii=

1
2
((Xst

1 )i)2 , (9.2)

while for i =/ j it expresses (X2)ij in terms of (X1)i, (X1)j , (X2)ji. Denoting by
Sym(X2) := 1

2
(X2+ (X2)T) the symmetric part of X2, we can rewrite the shuffle

relation more compactly as follows:

Sym(X2)=
1
2
X1⊗X1 . (9.3)

Definition 9.2. Rough paths in Rα,d that satisfy the shuffle relation ( 9.1)-( 9.3)
are called weakly geometric and denoted by Rα,d

wg .
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Exercise 9.1. For α> 1

2
we have Rα,d=Rα,d

wg (every rough path is weakly geometric).

We can now show that the closure of R1,d in Rα,d is included in Rα,d
wg .

Lemma 9.3. Geometric rough paths are weakly geometric: Rα,d
g ⊂Rα,d

wg for any α∈(1
3
,

1), with a strict inclusion.

Proof. Canonical rough paths (X1,X2)∈R1,d over smooth paths satisfy the shuffle
relation (9.1)-(9.3). Geometric rough paths are by definition limits inRα,d of smooth
paths in R1,d. Since convergence in Rα,d implies pointwise convergence, geometric
rough paths satisfy the shuffle relation too. This shows that Rα,d

g ⊂Rα,d
wg .

To prove that the inclusion Rα,d
g ⊂Rα,d

wg is strict, it suffices to consider a weakly
geometric rough path (X1,X2)∈Rα,d

wg which lies above a path X ∈ Cα which is not
in the closure of C1. Such a path is not geometric (recall that (Xn

1,Xn
2)→ (X1,X2)

in Rα,d implies Xn
1→X1 in C2

α).
To prove the existence of such a rough path, in the one-dimensional case d=1

it is enough to consider the one provided by (8.19), which is by construction weakly
geometric, since the shuffle relation reduces to Xst

2 := 1

2
(Xst

1 )2. !

Although the inclusion Rα,d
g ⊂Rα,d

wg is strict, what is left out turns out to be not
so large. More precisely, recalling that Rα,d

g is the closure of R1,d in Rα,d, we have
a result which is similar to what happens for Hölder spaces, with the important
difference that the whole space Rα,d is replaced by Rα,d

wg . The proof is non-trivial
and we omit it.

Proposition 9.4. For any 1

3
<α ′< α< 1 one has Rα,d

wg ⊆Rα′,d
g . This means that

for any X∈Rα,d
wg there is a sequence Xn∈R1,d such that Xn→X in Rα′,d.

We stress that the notion of “weakly geometric” rough path depends only on the
function X=(X1,X2), but the notion of “geometric” rough path depends also on the
chosen space Rα,d. Given a weakly geometric rough path X∈Rα,d, even though X
may fail to be geometric in Rα,d, it is certainly geometric in Rα′,d for all α ′<α. In
this sense, every weakly geometric rough path is a geometric rough path, of a possibly
slightly lower regularity .

Finally we note the following

Proposition 9.5. Let α∈
( 1
2
,1
)
and X ∈Cα([0,T ];Rd). The canonical α-rough path

constructed in Lemma 8.14 is geometric.

Proof. We recall that by the Chen relation

δ(X2)sut
ij = δXsu

i δXut
j , δ(X2)sut

ji = δXsu
j δXut

i ,

so that
δ[(X2)ij+(X2)ji]sut= δXsu

i δXut
j + δXsu

j δXut
i .

On the other hand by a simple computation

δ[δX i δX j]sut= δXsu
i δXut

j + δXsu
j δXut

i .
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Therefore (X2)ij+(X2)ji− δX i δX j= δf for some f ∈C1 such that δf ∈C22α. Since
2α> 1, we obtain that δf ≡ 0. !

Note that Proposition 9.5 can be seen as a consequence of the integration by
parts formula satisfied by the Young integral, see Proposition 7.7.

9.2. The Stratonovich rough path

Let (Bt)t!0 be a d-dimensional Brownian motion. We have seen in Theorem 4.2 that
the B=(B1,B2), defined by

Bst
1 := δBst, Bst

2 :=

∫

s

t

Bsr
1 ⊗dBr, 0" s" t"T ,

with an Itô integral, defines a.s. a α-rough path for all α∈
( 1
3
, 1
2

)
, that we can call

the Itô rough path. As in section 5.1 we modify now this definition and we set

B̄st
1 := δBst, B̄st

2 :=

∫

s

t

B̄sr
1 ⊗◦dBr, 0" s" t"T ,

where ◦ denotes Stratonovich integration, namely

B̄st
1 := δBst, B̄st

2 :=

∫

s

t

(Br−Bs)⊗dBr+
t− s
2

I , 0" s" t"T ,

with I the identity matrix in Rd⊗Rd. By Lemma 8.15, B̄= (B̄1, B̄2) defines a α-
rough path for all α∈

( 1
3
, 1
2

)
, that we call the Stratonovich rough path. Now we show

that B̄ is geometric. We recall that the integration by parts formula reads in this case

Bt
iBt

j−Bs
iBs

j=

∫

s

t

Br
i ◦ dBr

j+

∫

s

t

Br
j ◦ dBr

i , 0" s" t.
Moreover ∫

s

t

Bs
i ◦dBr

j=Bs
i (Bt

j−Bs
j).

Therefore

(B̄st
2 )ij+(B̄st

2 )ji = Bt
iBt

j−Bs
iBs

j−Bs
i (Bt

j−Bs
j)−Bs

j (Bt
i−Bs

i)

= (Bt
i−Bs

i)(Bt
j−Bs

j)= [B̄st
1 ⊗ B̄st

1 ]ij.

As in the remark following Proposition 9.5, also in the case of the Stratonovich rough
path an integration by parts formula is at the heart of the geometric property.

On the other hand, the Itô rough path is not geometric, since the integration by
parts formula with Itô integrals reads for i= j

(Bt
i)2− (Bs

i)2=2

∫

s

t

Br
i dBr

i +(t− s), 0" s" t,

and moreover we have ∫

s

t

Bs
i dBr

i =Bs
i (Bt

i−Bs
i).
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Therefore by the definition of Bst
2

2(Bst
2 )ii = (Bt

i)2− (Bs
i)2− 2Bs

i (Bt
i−Bs

i)− (t− s)
= (Bt

i−Bs
i)2− (t− s)

= [Bst
1 ⊗Bst

1 ]ii− (t− s)
=/ [Bst

1 ⊗Bst
1 ]ii.

Note that for i=/ j we do obtain (Bst
2 )ij+(Bst

2 )ji= [Bst
1 ⊗Bst

1 ]ij.

9.3. Non-geometric rough paths

We next consider generic rough paths. These cannot be approximated by canonical
rough paths over smooth paths. However we have

Lemma 9.6. Given an arbitrary rough path (X1,X2)∈Rα,d lying above X, there is
always a weakly geometric rough path (X1, X̃2)∈Rα,d

wg lying above the same path X.

Proof. It suffice to define X̃ij
2 :=Xij

2 for all i> j and use the shuffle relation to define
the remaining entries of X̃2, i.e. X̃ii

2 := 1

2
(Xi

1)2 and X̃ij
2 :=Xi

1Xj
1−Xji

2 for all i < j.
In this way (X1, X̃2) satisfies the shuffle relation by construction and it is easy to
check that X̃2∈C22α.

It remains to prove that the Chen relation (8.21) holds for (X1, X̃2), that is

δX̃ij
2 (s, u, t)=Xi

1(s, u)Xj
1(u, t) .

If i > j this holds because X̃ij
2 =Xij

2 , so we only need to consider i= j and i < j.
Note that if we define Ast := δfst δgst, for arbitrary f , g: [a, b]→R, we have

δAsut = δfst δgst− δfsu δgsu− δfut δgut
= (δfsu+ δfut) δgst− δfsu δgsu− δfut δgut
= δfsu δgut+ δgsuδfut.

Applying this to f =X i and g=X j yields, for i < j,

δX̃ij
2 (s, u, t) = δ(Xi

1Xj
1−Xji

2 )(s, u, t)

= Xi
1(s, u)Xj

1(u, t)+Xj
1(s, u)Xi

1(u, t)−Xj
1(s, u)Xi

1(u, t)

= Xi
1(s, u)Xj

1(u, t) .

Similarly, choosing f = g=Xi gives δX̃ii
2 (s, u, t)=Xi

1(s, u)Xi
1(u, t). !

As a corollary, we obtain a useful approximation result.

Proposition 9.7. For any rough path (X1,X2) ∈Rα,d, there is a function f ∈
C2α([0, T ];Rd⊗Rd) and a sequence of canonical rough paths over smooth paths (Xn

1,
Xn
2)∈R1,d such that

(Xn
1,Xn

2 + δf)→ (X1,X2) in Rα′,d , ∀α ′∈
(
1
3
,α

)
.
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Proof. By Lemma 9.6 there is a weakly geometric rough path (X1, X̃2) lying
above the same path X. Then X2 − X̃2 = δf for some f ∈ C2α([0, T ];Rd ⊗Rd),
by Lemma 8.15. By Proposition 9.4, there is a sequence (Xn

1,Xn
2)∈R1,d such that

(Xn
1,Xn

2)→ (X1, X̃2) in Rα′,d, for any α ′<α. It follows that (Xn
1,Xn

2 + δf)→ (X1,

X̃2+ δf)= (X1,X2). !

9.4. Pure area rough paths

Given X ∈ Cα, we have defined in Definition 3.2 the subset Rα,d(X) of rough paths
(X1,X2)∈Rα,d lying above X, i.e. such that X1= δX. The case of X1≡ 0 is partic-
ularly interesting:

Definition 9.8. The elements of Rα,d(0), i.e. those of the form X= (0,X2), are
called pure area rough paths.

Pure area rough paths are very explicit. Let us denote by (Rd×d)a the subspace
of Rd×d given by antisymmetric matrices.

Lemma 9.9. X= (0,X2) is a pure area α-rough path if and only if X2= δf, for
some f ∈C2α([0, T ];Rd×d). Such rough path is weakly geometric if and only if Xst

2 ∈
(Rd×d)a, i.e. Xst

2 is an antisymmetric matrix, for all s, t∈ [0, T ]"2 ; equivalently, we
can take f ∈ C2α([0, T ]; (Rd×d)a).

Proof. Since (0,0) is a rough path, it follows by Lemma 8.15 that for all (pure area)
rough paths (0,X2) we have X2= δf for some f ∈C2α. We may assume that f(0)=0
(just redefine f(t) as f(t)− f(0)). Since X1=0, the shuffle relation (9.3) becomes
Sym(X2)= 0, i.e. Xst

2 is an antisymmetric matrix. Then f(t)= f(t)− f(0)=X0t
2 is

antisymmetric too. !

Note that the set Rα,d(0) of pure area rough paths is a vector space, because
the Chen relation (8.21) reduces to the linear relation δX2=0. Here is the link with
general rough paths.

Proposition 9.10. The set Rα,d(X) of rough paths laying above a given path X is
an affine space, with associated vector space Rα,d(0), the space of pure area rough
paths.

Proof. Given rough paths X= (X1,X2) and X̄= (X1, X̄2) lying above the same
path X, their difference X− X̄=(0,X2− X̄2) is a pure area rough path, because it
satisfies the Chen relation δ(X2− X̄2)= 0 (since δX2=X1⊗X1= δ X̄2).

Alternatively, Lemma 8.15 yields X2− X̄2= δf for some f ∈C2α, hence (0,X2−
X̄2) is a pure area rough path by Lemma 9.9. !

We have seen in Section 8.8 how pure area rough paths can arise concretely as
limits of canonical rough paths associated with smooth paths.
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9.5. Doss-Sussmann

In this section we suppose that σ:Rk→Rk⊗ (Rd)∗ is such that for all i∈{1,..., k} the
d×d matrix ((σ2)jℓi )jℓ is symmetric, namely by (3.5) we have the Frobenius condition

∑

a=1

k

σℓ
a(y)∂aσj

i(y)=
∑

a=1

k

σj
a(y)∂σℓ

i(y), ∀y∈Rk, i∈{1,...,k}, j ,ℓ∈{1,...,d}. (9.4)

If we introduce the vector fields (Xj)j=1, . . . ,d on Rk:

Xj f :=
∑

a=1

k

σj
a ∂af , f ∈C∞(Rk),

then the Frobenius condition (9.4) is equivalent to the commutation relation

Xj ◦Xℓ=Xℓ ◦Xj , j , ℓ∈ {1, . . . , d}.

For example, if k= d=2 and we consider

σj
i(y)=1{i=j} yi,

namely

σ(y)=

(
y1 0
0 y2

)
, y=(y1, y2)∈R2,

then
∂aσj

i(y)=1{i=j=a},

and

(σ2)jℓ
i (y)=

∑

a=1

2

∂aσj
i(y)σℓ

a(y)=1{i=j=ℓ} yi,

which is clearly symmetric in (j , ℓ).
If the Frobenius condition (9.4) holds and X=(X1,X2) is a weakly geometric α-

rough path, we obtain

(σ2(y)X2)i =
∑

a,b=1

2

(σ2)ab
i (y)(X2)ba

=
∑

a,b=1

2
1
2
{(σ2)abi +(σ2)ba

i }(y)(X2)ba

=
1
2

∑

a,b=1

2

(σ2)ab
i (y){(X2)ab+(X2)ba}

=
1
2

∑

a,b=1

2

(σ2)ab
i (y) (X1)a(X1)b (9.5)

=
1
2
(σ2(y) (X1⊗X1))i.
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In this case it turns out that the solution Z to the associated finite difference
equation is a function of X1 alone since (3.19) is equivalent to

|Zst
[3]|# |t− s|3α, Zst

[3]= δZst−σ(Zs)Xst
1 − 1

2
σ2(Zs) (Xst

1 ⊗Xst
1 ). (9.6)

Arguing as in the proof of the proof of Theorem 3.11, it can be seen that the map
(Z0,X1) +→Z is continuous.

Proposition 9.11. Let M > 0 and let us suppose that X is a weakly geometric
rough path and σ:Rk→Rk⊗ (Rd)∗ satisfies the Frobenius condition ( 9.4). If

max {|σ(Z0)|+ |σ(Z̄0)|+ |σ2(Z̄0)|, ∥X1∥α, ∥X̄1∥α}"M,

then for every T > 0 there are τ̂M,D,T , CM,D,T > 0 such that for τ ∈ ]0, τ̂M,D,T ]

∥Z − Z̄∥∞,τ + ∥δZ − δZ̄∥α,τ + ∥Z [2]− Z̄ [2]∥2α,τ "
"CM,D,T (|Z0− Z̄0|+ ∥X1− X̄1∥α).

In particular, the solution to ( 3.19) depends only on X1 if X is a geometric rough
path.

Proof. The proof follows from the same arguments as in the proof of Theorem
3.11, if one uses the algebraic relations for Y [3] :=Z [3]− Z̄ [3] and δY [3] := δZ [3]− δZ̄ [3]

obtained by replacing X2 with 1

2
X1⊗X1, as in

Zst
[3] = δZst− σ(Zs)Xst

1 − 1
2
σ2(Zs) (Xst

1 ⊗Xst
1 ),

δZsut
[3] = (σ(Zu)−σ(Zs)−σ2(Zs)Xsu

1 )Xut
1 +

1
2
δσ2(Z)su (Xut

1 ⊗Xut
1 ),

and analogously for Z̄ [3], δZ̄ [3]. One can also note the simple estimate

∥X1⊗X1− X̄1⊗ X̄1∥2α" ∥X1− X̄1∥α(∥X1∥α+ ∥X̄1∥α).

The rest of the proof is identical to that of Theorem 3.11. !

Remark 9.12. Doss and Sussmann prove a continuity result in the sup-norm.

9.6. Lack of continuity (again)

In section 9.5 we have seen that, under appropriate conditions on σ, the map (Z0,
X1) +→Z is continuous if X=(X1,X2) varies in the class of weakly geometric rough
paths. In this section we show that this is not a general fact, and the continuity
result of Proposition 3.11 can not be improved in general.

More precisely, we consider the sequence Xn=(Xn
1,Xn

2) such that Xn
1→0, Xn

2→
X2=/ 0 constructed in Section 8.8 and we provide an explicit σ:Rk→Rk⊗ (Rd)∗ one
such that the solution Zn to the finite difference equation

δZst
n−σ(Zsn) (Xn

1)st−σ2(Zsn)(Xn
2)st= o(t− s)

is not a continuous function of (Z0,X1) (but only of (Z0,X1,X2)).
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For y1, y2∈R, σ:R2→R2⊗ (R2)∗, we set

y=

(
y1
y2

)
, σ(y) :=

(
y2 0
0 y1

)
.

In coordinates,
σj
i(y)=1{i=j=1} y2+1{i=j=2} y1.

If we compute the partial derivative

∂σj
i(y)
∂ya

=1{i=j=/ a}, a∈ {1, 2},

we obtain the expression for σ2

(σ2)jℓ
i (y)=

∑

a=1

2

∂aσj
i(y)σℓ

a(y)=1{i=j=/ ℓ} yℓ.

Note that σ2 is not symmetric with respect to (j , ℓ) i.e. (σ2)jℓi =/ (σ2)ℓji , namely it does
not satisfy the Frobenius condition (9.4). By takingX2 from Section 8.8, we compute

(σ2(y)X2)i=
∑

a,b=1

2

(σ2)ab
i (y)(X2)ba=

t− s
2

(1{i=2} y1−1{i=1} y2).

Since we have already shown that X1=0, we get

ẏ=
1
2

(
0 −1
1 0

)
y,

we can conclude that the solution y is in the form of exponential different from a
constant.
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