CHAPTER 9
GEOMETRIC ROUGH PATHS

9.1. GEOMETRIC ROUGH PATHS

We recall that the set of smooth paths C! is not dense in C®, but its closure is quite
large, because it contains C* for all o’ > «v. The situation is different for rough paths:
the set R4 4 of canonical rough paths over smooth paths is again not dense in R, 4,
but its closure is a significantly smaller set, that we now describe.

DEFINITION 9.1. The closure of R4 in Ra,q for a € }%, 1] 1s denoted by Ri,d and
its elements are called geometric rough paths.

For smooth paths f, g € C?, the integration by parts formula holds:

/}wmmmszﬂw—ﬂ@M$—/ZWMﬂm.

It follows that
t

t
/ (f(u) = f(s)) dg(u) +/ (9(u) = g(s)) df(u) = (f(t) = f(s))(g(t) = g(s)).
We have seen in Proposition 7.7 that the same formula holds if (f, g) € C® x CP with
a4+ (>1 and the integral is in the Young sense.

Given a smooth path X € C'!, define X? by (8.26) as an ordinary integral (i.e.
(X', X?) is the canonical rough path over X). The previous relation for f= X; and
g = X shows that

(th)ij + (th)ji - (X;t)i(th)j . (9.1)
This relation is called the shuffle relation: for i = j it identifies X? in terms of X;:
| .
(X5 =5 ((X5)")?, (9-2)
2

while for i # j it expresses (X?)¥ in terms of (X')? (X')7, (X?)/. Denoting by
Sym(X?) ::% (X2 + (X?*)T) the symmetric part of X% we can rewrite the shuffle
relation more compactly as follows:

Sym(X?) =2 X' @ X, (9.3)

DEFINITION 9.2. Rough paths in Ra.q that satisfy the shuffle relation (9.1)-(9.3)
are called weakly geometric and denoted by Ry
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Exercise 9.1. For « >% we have R%d:Rvav”gd (every rough path is weakly geometric).

We can now show that the closure of Ry 4 in Ra,q is included in RY%;.

LEMMA 9.3. Geometric rough paths are weakly geometric: RS, ;C RS for any a € (%,
1), with a strict inclusion.

Proof. Canonical rough paths (X!, X?) € R; 4 over smooth paths satisfy the shuffle
relation (9.1)-(9.3). Geometric rough paths are by definition limits in R, 4 of smooth
paths in R 4. Since convergence in R, 4 implies pointwise convergence, geometric
rough paths satisfy the shuffle relation too. This shows that R ;,C Ry,

To prove that the inclusion R ; CRY%, is strict, it suffices to consider a weakly
geometric rough path (X', X?) € R}% which lies above a path X € C* which is not
in the closure of C'. Such a path is not geometric (recall that (X;,, X2) — (X!, X?)
in R, 4 implies X}, — X! in C¢).

To prove the existence of such a rough path, in the one-dimensional case d=1
it is enough to consider the one provided by (8.19), which is by construction weakly
geometric, since the shuffle relation reduces to X2 := %(X;t)Q. O

Although the inclusion Rf, ; C R7%; is strict, what is left out turns out to be not
so large. More precisely, recalling that R, ; is the closure of Ry 4 in Ry 4, we have
a result which is similar to what happens for Holder spaces, with the important
difference that the whole space R, q is replaced by RY%. The proof is non-trivial
and we omit it.

PROPOSITION 9.4. For any %< o' <a <1 one has R4 CRE 4. This means that
for any XE'RZ,gd there is a sequence X, € Ry 4 such that X, — X in Ry 4.

We stress that the notion of “weakly geometric” rough path depends only on the
function X= (X!, X?), but the notion of “geometric”’ rough path depends also on the
chosen space R, 4. Given a weakly geometric rough path X € R, 4, even though X
may fail to be geometric in R, 4, it is certainly geometric in R,/ 4 for all o’ <a. In
this sense, every weakly geometric rough path is a geometric rough path, of a possibly
slightly lower regularity.

Finally we note the following

PROPOSITION 9.5. Let a € (%, 1) and X €C*([0, T};R?). The canonical c-rough path
constructed in Lemma 8.1/ 1s geometric.

Proof. We recall that by the Chen relation

8(X%)4,=6X1,0X),  6(X®)I,=0X], 0Xi,

sut

so that
O[(X) + (X2) = X, 8, + X0, 6.

On the other hand by a simple computation
S[0X 6X gy = 6X2,0X 7, +6X7, 6XE,.
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Therefore (X?)¥ + (X?)% — §X?6X7=4f for some f € Cy such that §f € C3*. Since
2a> 1, we obtain that 0 f =0. U

Note that Proposition 9.5 can be seen as a consequence of the integration by
parts formula satisfied by the Young integral, see Proposition 7.7.
9.2. THE STRATONOVICH ROUGH PATH

Let (B¢):>0 be a d-dimensional Brownian motion. We have seen in Theorem 4.2 that
the B= (B!, B?), defined by

t
Bl =3B, th:/IB;,«@dBT, 0<s<t<T,

%, %), that we can call

the It6 rough path. As in section 5.1 we modify now this definition and we set

with an It6 integral, defines a.s. a a-rough path for all o € (

t
B;:= 0By, IBEtzz/ B;, ®odB,,  0<s<t<T,
where o denotes Stratonovich integration, namely

t —
BL; := 0B, I_Bﬁt::/(Br—Bs)®dBr+tTSI, 0<s<t<T,
with I the identity matrix in R® R%. By Lemma 8.15, B = (B!, B?) defines a a-
rough path for all a € (%, %), that we call the Stratonovich rough path. Now we show
that B is geometric. We recall that the integration by parts formula reads in this case

t t
Bng_B;Bg:/Bgong+/BgodB:;, 0<s<t.
Moreover ° °

t
| Bioai= (51~ B)
Therefore ’
(B%)7 + (B = BiBl - BiB] - Bi(B] - B]) - B! (B - B))
= (Bi- B)(B] - B]) =By ® By]".
As in the remark following Proposition 9.5, also in the case of the Stratonovich rough
path an integration by parts formula is at the heart of the geometric property.

On the other hand, the It6 rough path is not geometric, since the integration by
parts formula with It integrals reads for i = j

t
(B§)2—(B§)2:2/ BidB! 4 (t —s), 0<s<¢t,

and moreover we have

t
/ BidBi— B! (Bi— BY).

s
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Therefore by the definition of B
2(B%)" = (B ) (B{)? —2Bi(B; — BY) — (t —s)
= (Bi—B)*—(t—s)
= [By® By — (t —s)
# [Bi@By".
Note that for i j we do obtain (IB%)" + (B%)’ = [BL, @ BL]".

9.3. NON-GEOMETRIC ROUGH PATHS

We next consider generic rough paths. These cannot be approximated by canonical
rough paths over smooth paths. However we have

LEMMA 9.6. Given an arbitrary rough path (X', X?) € R, 4 lying above X, there is
always a weakly geometric rough path (Xl,X2) Ra% lying above the same path X.

Proof. It suffice to define X :=X{F; for all i > j and use the shuffle relation to define
the remaining entries of X{ ie. X?Z = %( X})? and X?j =Xi X] — X3 for all i < j.
In this way (X', X?) satisfies the shuffle relation by construction and it is easy to

check that X2 e C3. i
It remains to prove that the Chen relation (8.21) holds for (X', X?), that is

0K (s, u,t) =X (s, u) Xj(u, ).

If 4> j this holds because X =X3;, so we only need to consider i=j and i < j.

Note that if we define A, := 5fst dgsi, for arbitrary f, g:[a,b] — R, we have

5Asut = 5fst 5gst - 5fsu 5gsu - 5.fut 5gut
— <5fsu + 5fut) 5gst - 5fsu 5gsu - 5fut 5gut
= 5fsu 5gut + 5gsu6fut

Applying this to f= X% and g= X’ yields, for i < j,

5§£,2j(s,u,t) = 5(X%X}—X]2-i)(s,u,t)
= X}(S,U)X}(u,t)+X}(S,U)X%(u,t)—X}(S,U)X}(u,t)
= Xi(s,u) Xj(u,t).

Similarly, choosing = g= X, gives (SX%(S, u,t) =X (s, u) X (u, t). O
As a corollary, we obtain a useful approximation result.

PROPOSITION 9.7. For any rough path (X!, X?) € Rq.4, there is a function f €
C?([0,T); RY®@RY) and a sequence of canonical rough paths over smooth paths (X,
X2) € R4 such that

(XL X246/) = (XL,X2)  in R, Va’é(%,@).
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Proof. By Lemma 9.6 there is a weakly geometric rough path (X! X?) lying
above the same path X. Then X2 — X2=4f for some f e C2*([0,T]; R?® RY),
by Lemma 8.15. By Proposition 9.4, there is a sequence (X}, X2) € Ry 4 such that
(XL, X2) = (X!, X?) in Rarg, for any o’ < . It follows that (X}, X2 4 df) — (X1,
X2+ 0f) = (X', X?). O

9.4. PURE AREA ROUGH PATHS

Given X € C?, we have defined in Definition 3.2 the subset R, 4(X) of rough paths
(X!, X?) € Rq.q lying above X, i.e. such that X' =0X. The case of X' =0 is partic-
ularly interesting:

DEFINITION 9.8. The elements of Ra.4(0), i.e. those of the form X=(0,X?), are
called pure area rough paths.

Pure area rough paths are very explicit. Let us denote by (IR?*%)? the subspace
of R¥*? given by antisymmetric matrices.

LEMMA 9.9. X =(0,X?) is a pure area a-rough path if and only if X>=4f, for
some f€C*([0,T); RY*?). Such rough path is weakly geometric if and only if X% €
(R¥*4)2 4.e. X2 is an antisymmetric matriz, for all s,t € [0, T)%; equivalently, we

can take f€C?*([0,T]; (R¥*%)).

Proof. Since (0,0) is a rough path, it follows by Lemma 8.15 that for all (pure area)
rough paths (0,X?) we have X?=§f for some f €C?*. We may assume that f(0)=0
(just redefine f(t) as f(t) — f(0)). Since X! =0, the shuffle relation (9.3) becomes
Sym(X?) =0, i.e. X2 is an antisymmetric matrix. Then f(t)= f(t) — f(0) =X3, is
antisymmetric too. U

Note that the set R, 4(0) of pure area rough paths is a vector space, because
the Chen relation (8.21) reduces to the linear relation 6X?=0. Here is the link with
general rough paths.

PROPOSITION 9.10. The set Ry 4(X) of rough paths laying above a given path X is
an affine space, with associated vector space Ra.q4(0), the space of pure area rough
paths.

Proof. Given rough paths X = (X! X2) and X = (X!, X?) lying above the same
path X, their difference X — X = (0, X2 — X?2) is a pure area rough path, because it
satisfies the Chen relation §(X2 —X2) =0 (since 6X?=X'® X! =§ X?).
Alternatively, Lemma 8.15 yields X2 — X2=§f for some f €C?®, hence (0, X2 —
X?) is a pure area rough path by Lemma 9.9. O

We have seen in Section 8.8 how pure area rough paths can arise concretely as
limits of canonical rough paths associated with smooth paths.
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9.5. DO0SS-SUSSMANN

In this section we suppose that o: R¥— RF @ (RY)* is such that for all i € {1,...,k} the
d x d matrix ((02)});e is symmetric, namely by (3.5) we have the Frobenius condition

k
ZO’ )00 (y Zaj‘?(y)aa}ﬁ(y), VyeRFie{l,.. ,k},j,0e{l, ...d}. (9.4)

=1 a=1

S]

If we introduce the vector fields (X;);=1

-----

k
Xif:=Y ofouf,  feC™(RH,

then the Frobenius condition (9.4) is equivalent to the commutation relation

XjOXg:XgOXj, ],€€{1,,d}

For example, if k=d =2 and we consider

oi(y) = Lii=j) ¥i,

namely
0
U(y):< %1 )7 y:(y1>y2)€ﬂ:{27
Y2
then
0.05(y) = L{i=j=a};
and

02 JE Z 8[10' = ]l{z j=0} Yi,

which is clearly symmetric in (7, ¢).
If the Frobenius condition (9.4) holds and X = (X!, X?) is a weakly geometric a-
rough path, we obtain

(o2(y) X2)" = (2)an(y) (X2)P

SR

IS]
Mo
A

{(02)ap+ (02)ba} () (X2)°

Do =

a@
o
Il
-

(o2)ap(y){ (X?)? 4 (X2)P}

Il
no| =
(]

8
T
A

(o2)an(y) (X)X (9.5)

—~ Q
o
I
—

oa(y) (X' @ X)),
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In this case it turns out that the solution Z to the associated finite difference
equation is a function of X! alone since (3.19) is equivalent to

1
Z3 1Sl =sl 23 =0Zu—0(Z) Xl — 5 0a(Z) (X 0 X3y). (9.6)

Arguing as in the proof of the proof of Theorem 3.11, it can be seen that the map
(Zo, X') — Z is continuous.

PROPOSITION 9.11. Let M >0 and let us suppose that X 1s a weakly geometric
rough path and o: R¥ — RF @ (RY)* satisfies the Frobenius condition (9.4). If

max {|o(Zo)| + |0 (Zo)| + |oa( Zo) |, 1KMoy [IXM|a} < M,
then for every T >0 there are Tar,p.r, Coyr p,r >0 such that for 7€ 10, Tar,p 7]
||Z - Z”oo,f"’ ||5Z - 5Z||a,7+ ||Z[2] - ZmHZa,T <
< Cu.p1 (120 — Zol+ X" = X[o)-

In particular, the solution to (3.19) depends only on X' if X is a geometric rough
path.

Proof. The proof follows from the same arguments as in the proof of Theorem
3.11, if one uses the algebraic relations for Y := ZB — ZBl and §YBl.= 2B — § 7!
obtained by replacing X2 with %Xl ® X!, as in

1
23 = 6Zu—0(Z) X}~ 504(Z,) (Xh® X},

52, = (02~ 0(2.) — 0o 2) K1) Kby £ 005( 2o (Kb @ XL,

sut
and analogously for ZP¥, §Z1%. One can also note the simple estimate
X1 @ X! = X! © X0 < 1K = X a5+ X1
The rest of the proof is identical to that of Theorem 3.11. O

Remark 9.12. Doss and Sussmann prove a continuity result in the sup-norm.

9.6. LACK OF CONTINUITY (AGAIN)

In section 9.5 we have seen that, under appropriate conditions on o, the map (Z,
X'+ Z is continuous if X = (X!, X?) varies in the class of weakly geometric rough
paths. In this section we show that this is not a general fact, and the continuity
result of Proposition 3.11 can not be improved in general.

More precisely, we consider the sequence X, = (X}, X2) such that X} — 0, X2 —
X2+ constructed in Section 8.8 and we provide an explicit o: R¥— R* ® (R?)* one
such that the solution Z" to the finite difference equation

025 — 0(Z3') (Xn)st — 02 Z3) (X3) st = 0(t — 5)

is not a continuous function of (Zy, X!) (but only of (Zy, X!, X?)).
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For y1, 2 € R, 0: R? - R?*® (R?)*, we set

() ww(32)

Oji*(y) =lyi—j=y y2 -+ Lyizj=2y 1.

In coordinates,

If we compute the partial derivative

00}(3/)
——2 =T izay, ac{l, 2},
N {i=j#a} { }

we obtain the expression for oo

02 ]Z Z aaaj l{z j#e} Ye

Note that o3 is not symmetric with respect to (7, ¢) i.e. (02)i % (02)};, namely it does
not satisfy the Frobenius condition (9.4). By taking X? from Section 8.8, we compute

2
t—s
=) (02)a(y) (X3 == (L) 91— L1y 12).

a,b=1

Since we have already shown that X! =0, we get

10 -1

we can conclude that the solution y is in the form of exponential different from a
constant.



