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Course Title. Stochastic Analysis and Applications

Teacher(s). Francesco Caravenna (Milano-Bicocca)

Overview. This course presents modern topics in differential equations driven by irregular

functions (continuous yet non-differentiable) that lead to the foundational concept of rough
paths. This generalization offers new insights into the classical theory of stochastic integration

with respect to Brownian motion. We may also explore applications to singular (stochastic)

partial differential equations.

The course’s analytic core requires few prerequisites. Applications in stochastic integration

require measure-theoretic probability, and familiarity with Brownian motion is helpful (inter-

ested students lacking some background are encouraged to contact me).

When. Wed 14:30-17:00 (Nov 2024 – Jan 2025)

First lecture: Nov 6, 2024

Where. Department of Mathematics and Applications, University of Milano-Bicocca

U5 building (via Cozzi 55, Milano), room 3014 2109 (2nd floor)

Webpage of the course. (Guest access with key SAA-2425)

https://elearning.unimib.it/course/view.php?id=58890

Streaming. (Webex link)

https://unimib.webex.com/unimib-it/j.php?MTID=
m70a34a9a5bbf8cbd22d531252932b59e

Contacts. francesco.caravenna@unimib.it

Abstract.

• Introduction to singular differential equations, the sewing bound

• Difference equations: the Young case

• Difference equations: the rough case

• Stochastic differential equations

• The sewing lemma and the Young integral

• Rough paths and rough integration

• Examples and applications

References.
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• Francesco Caravenna, Massimiliano Gubinelli, Lorenzo Zambotti. Ten Lectures on Rough
Paths. Lecture Notes.
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