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THE SEWING BOUND
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PROVING THE SEWING BOUND
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Fix a finite vet T o T say T tactic ctm

Given R Rst set sitett

1112114 s.tt
set'ftstnvoRlEi

suttTsu.tFEF
Them DISCRETE SEWING BOUND If Rst o whenever
s t are consecutive points in IT i.e Seti t titi for imei

then

ysi liking Cyllorily withCn 2 In

Raak The rewingbound is onlyuseful if HER yes
for some 4 1 The assumption of the rewingbound
is that Rst oft s If we have Rst O t s k

for some 4 2 then also EE 0 t s HSRlyro
Rst Rsu Rut



2 DIFFERENCE EQUATIONS YOUNG CASE
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A PRIOR ESTIMATES
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