

REMINDERS. Fix dimensions $d, k \in \mathbb{N}$ and time horizon $T \in (0, \infty)$.

- Fix an exponent $\alpha \in (\frac{1}{3}, \frac{1}{2}]$ "ROUGH CASE"
- Fix a path $X: [0, T] \rightarrow \mathbb{R}^d$ of class C^α $\|\delta X\|_\alpha < \infty$
- Fix $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ an α -ROUGH PATH (RP) over X

$$\mathbb{X}^1: [0, T] \rightarrow \mathbb{R}^d \quad \mathbb{X}^2: [0, T] \rightarrow \mathbb{R}^d \otimes \mathbb{R}^d \simeq \mathbb{R}^{d \times d}$$

$$\begin{aligned} \mathbb{X}_{st}^1 &\lesssim (t-s)^\alpha & \|\mathbb{X}^1\|_\alpha &< \infty \\ &\leq C \cdot (t-s)^\alpha & \left\| \int_s^t \delta X_{su} \dot{X}_u du \right\| &\lesssim C (t-s)^{2\alpha} & \|\mathbb{X}^2\|_{2\alpha} &< \infty \\ \mathbb{X}_{st}^1 &= \delta X_{st} & \delta \mathbb{X}_{sut}^2 &= \mathbb{X}_{su}^1 \otimes \mathbb{X}_{ut}^1 & (\text{Chen}) \end{aligned}$$

- Fix $\sigma: \mathbb{R}^k \rightarrow \mathcal{L}(\mathbb{R}^d, \mathbb{R}^k)$ of class C^1 , define $\sigma_2: \mathbb{R}^k \rightarrow \mathcal{L}(\mathbb{R}^d \otimes \mathbb{R}^d, \mathbb{R}^k)$

$$\sigma_2(z) := \nabla \sigma(z) \circ \sigma(z)$$

Rough Difference Equation for unknown path $Z: [0, T] \rightarrow \mathbb{R}^k$

$$(\ast'') \quad \delta Z_{st} = \sigma(Z_s) \mathbb{X}_{st}^1 + \sigma_2(Z_s) \mathbb{X}_{st}^2 + o(t-s) \quad \text{unif. } 0 \leq s < t \leq T$$

Define $Z_{st}^{[2]} := \underbrace{\delta Z_{st}}_{Z_{st}^{[1]}} - \sigma(Z_s) \mathbb{X}_{st}^1$

$Z_{st}^{[1]}$

$$Z_{st}^{[3]} := \underbrace{\delta Z_{st} - \sigma(Z_s) \mathbb{X}_{st}^1 - \sigma_2(Z_s) \mathbb{X}_{st}^2}_{Z_{st}^{[2]}} = o(t-s)$$

iff Z solves (\ast'')

Last time we discussed:

- **UNIQUENESS OF SOLUTIONS**

when $\sigma \in C^3$

- **A PRIORI ESTIMATES**

when $\|\nabla \sigma\|_\infty, \|\nabla \sigma_2\|_\infty < \infty$

► $\|Z^{[3]}\|_{3\alpha} \leq K_{3\alpha} \cdot \underbrace{C_{\alpha, \sigma, X}}_{\text{SEWING BOUND}} \cdot (\|\delta Z\|_\alpha + \|Z^{[2]}\|_{2\alpha})$

► For small time $T^\alpha \leq \varepsilon'_{\alpha, \sigma, X}$:

$$\|\delta Z\|_\alpha + \|Z^{[2]}\|_{2\alpha} \leq 2 (\sigma(z_0) \|X^1\|_\alpha + \sigma_2(z_0) \|X^2\|_{2\alpha})$$

$$\Rightarrow \|\delta Z\|_\alpha + \|Z^{[2]}\|_{2\alpha} + \|Z^{[3]}\|_{3\alpha} \leq f_{\alpha, \sigma, X}(z_0)$$

Today we complete our treatment of the RDE $(*)''$ discussing EXISTENCE and CONTINUITY OF THE SOLUTION MAP

EXISTENCE

Theorem - Fix $\alpha \in (\frac{1}{3}, \frac{1}{2}]$, $X \in \mathcal{C}^\alpha$ and X α -RP over X .
Assume that $\sigma \in C^1$ with σ and σ_2 globally Lipschitz ($\|\nabla \sigma\|_\infty, \|\nabla \sigma_2\|_\infty < \infty$) - Then, for any $T \in (0, \infty)$ and any $z_0 \in \mathbb{R}^n$, there exists a solution $Z = (Z_t)_{t \in [0, T]}$ of the RDE $(*)''$.

We will prove it assuming $T > 0$ small enough.

We proceed similarly to the Young case $\alpha > \frac{1}{2}$, i.e. we construct a sequence $\bar{Z}^n = (\bar{Z}_t^n)_{t \in \Pi^n}$ of "approximate solutions" defined on dyadic partitions Π^n of $[0, T]$, then we extend \bar{Z}^n linearly to $[0, T]$, we extract a converging subsequence $\bar{Z}^{n_k} \rightarrow \bar{Z}$ and we show that \bar{Z} is indeed a solution of $\textcircled{*}^n$.

However we enrich the Euler scheme used to construct \bar{Z}^n in the Young case, using a MILSTEIN SCHEME.

Fix $\Pi = \{0 = t_0 < t_1 < \dots < t_K = T\}$ - Fix $z_0 \in \mathbb{R}^K$.
 Define $\bar{Z}^{\bar{\Pi}} = (\bar{Z}_t^{\bar{\Pi}})_{t \in \bar{\Pi}}$ by

$$\bar{Z}_0^{\bar{\Pi}} := z_0, \quad \bar{Z}_{t_{i+1}}^{\bar{\Pi}} := \bar{Z}_{t_i}^{\bar{\Pi}} + \sigma(\bar{Z}_{t_i}^{\bar{\Pi}}) \cdot \mathbb{X}_{t_i, t_{i+1}}^1 + \sigma_2(\bar{Z}_{t_i}^{\bar{\Pi}}) \cdot \mathbb{X}_{t_i, t_{i+1}}^2$$

If we define the "remainder"

$$(\bar{Z}^{\bar{\Pi}})^{[3]}_{st} := \delta \bar{Z}_{st}^{\bar{\Pi}} - \sigma(\bar{Z}_s^{\bar{\Pi}}) \mathbb{X}_{st}^1 - \sigma_2(\bar{Z}_s^{\bar{\Pi}}) \mathbb{X}_{st}^2$$

then, by construction, $(\bar{Z}^{\bar{\Pi}})^{[3]}_{t_i, t_{i+1}} = 0 \quad \forall i = 0, \dots, K-1$.

Then we can apply the DISCRETE SWING BOUND

$$\| (\bar{Z}^{\bar{\Pi}})^{[3]} \|_{3\alpha}^{\bar{\Pi}} \leq C_{3\alpha} \| \delta (\bar{Z}^{\bar{\Pi}})^{[3]} \|_{3\alpha}^{\bar{\Pi}}$$

With an almost identical proof as we did, we obtain a priori estimates:

$$\|\delta Z^\pi\|_\alpha^\pi + \|(Z^\pi)^{[2]}\|_{2\alpha}^\pi + \|(Z^\pi)^{[3]}\|_{3\alpha}^\pi \leq \overbrace{\int_{\alpha, \sigma, \chi}^{\pi} (z_0)}^{\text{UNIFORM IN } \pi} !$$

Consider now $\Pi_n := \left\{ \frac{i}{2^n} : i=0, 1, 2, \dots \right\} \cap [0, T]$

Define for simplicity $Z^n := Z^{\Pi_n}$ and extend it to $[0, T]$ as a piecewise linear function $Z^n = (Z_t^n)_{t \in [0, T]}$.

By cheap arguments $\|\delta Z^n\|_\alpha \leq 3 \|\delta Z^n\|_{\alpha}^{\Pi_n}$

possibly also $\|(Z^n)^{[3]}\|_{3\alpha} \leq 3 \|(Z^n)^{[3]}\|_{3\alpha}^{\Pi_n}$

$$\Rightarrow \|\delta Z^n\|_\alpha + \|(Z^n)^{[3]}\|_{3\alpha}^{\Pi_n} \leq 3 \underbrace{\int_{\alpha, \sigma, \chi}^{\Pi_n} (z_0)}_G \quad \forall n \in \mathbb{N}.$$

Since $Z_0^n = z_0$ and $\|\delta Z^n\|_\alpha \leq G$, $\forall n \in \mathbb{N}$, the sequence $(Z^n)_{n \in \mathbb{N}}$ is equi-bounded and equi-continuous in $C([0, T], \mathbb{R}^k)$, hence by Arzelà-Ascoli we can extract a converging subsequence $Z^{n_k} \rightarrow Z \in C([0, T], \mathbb{R}^k)$.

So we have $Z_t^{n_k} \xrightarrow{k \rightarrow \infty} Z_t \quad \forall t \in [0, T]$.

Let us rewrite $\|(Z^n)^{[3]}\|_{3\alpha}^{\mathbb{T}_n} \leq C$ as

$$|(Z^n)^{[3]}_{st}| = |\delta Z_{st} - \sigma(Z_s) X_{st}^1 - \sigma(Z_s) X_{st}^2| \leq C(t-s)^{3\alpha}$$

$\forall n \in \mathbb{N}, \quad \forall s, t \in \mathbb{T}_n.$

Fix $\bar{n} \in \mathbb{N}$ and $s, t \in \mathbb{T}_{\bar{n}}$. Consider $n = n_k \geq \bar{n}$.

Since $s, t \in \mathbb{T}_n \supseteq \mathbb{T}_{\bar{n}}$, as $k \rightarrow \infty$ we have

$$|\delta Z_{st} - \sigma(Z_s) X_{st}^1 - \sigma(Z_s) X_{st}^2| \leq C(t-s)^{3\alpha}$$

$$\forall s, t \in \mathbb{T}_{\bar{n}} \Rightarrow \forall s, t \in \bigcup_{\bar{n} \in \mathbb{N}} \mathbb{T}_{\bar{n}} = \mathbb{D}.$$

Since \mathbb{D} is dense in $[0, T]$, and since Z is continuous, the same bound holds $\forall s, t \in [0, T]$, which means that Z solves $(*)^{(1)}$. □

CONTINUITY OF THE SOLUTION MAP

Assume now that $\sigma \in C^3$ with

$$\|\nabla \sigma\|_\infty, \|\nabla^2 \sigma\|_\infty, \|\nabla^3 \sigma\|_\infty, \|\nabla \sigma_2\|_\infty, \|\nabla^2 \sigma_2\|_\infty \leq D < \infty$$

These assumptions entail GLOBAL EXISTENCE + UNIQUENESS of solutions $Z = (Z_t)_{t \in [0, T]}$ of $(*)^{(1)}$, for any initial datum $z_0 \in \mathbb{R}^k$.

If we fix $k, d \in \mathbb{N}$, $\alpha \in (\frac{1}{3}, \frac{1}{2}]$, $T \in (0, \infty)$,

then we can consider the SOLUTION MAP

$$\Phi : \mathbb{R}^k \times \mathcal{R}_{\alpha, d} \rightarrow \mathcal{C}^\alpha$$

$$(z_0, \mathbb{X}) \mapsto Z = (z_t)_{t \in [0, T]} \text{ solution of } \mathbb{X}''$$

where we denote by $\mathcal{R}_{\alpha, d}$ the space of α -ROUGH PATHS.

We can show that this map is CONTINUOUS, in fact
LOCALLY LIPSCHITZ, when we endow the space of RP
 $\mathcal{R}_{\alpha, d}$ with the distance for $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$, $\tilde{\mathbb{X}} = (\tilde{\mathbb{X}}^1, \tilde{\mathbb{X}}^2)$

$$d_\alpha(\mathbb{X}, \tilde{\mathbb{X}}) := \|\mathbb{X}^1 - \tilde{\mathbb{X}}^1\|_\alpha + \|\mathbb{X}^2 - \tilde{\mathbb{X}}^2\|_{2\alpha}$$

Theorem (CONTINUITY OF THE SOLUTION MAP)

Fix $D, M_0, M < \infty$. Assume that

$$\|\nabla \sigma\|_\infty, \|\nabla^2 \sigma\|_\infty, \|\nabla^3 \sigma\|_\infty, \|\nabla \sigma_2\|_\infty, \|\nabla^2 \sigma_2\|_\infty \leq D < \infty$$

and consider starting points z_0, \tilde{z}_0 such that

$$|\sigma(z_0)|, |\sigma(\tilde{z}_0)|, |\sigma_2(z_0)|, |\sigma_2(\tilde{z}_0)| \leq M_0$$

and consider rough paths $\mathbb{X}, \tilde{\mathbb{X}}$ such that

$$\|\mathbb{X}^1\|_\alpha, \|\mathbb{X}^2\|_{2\alpha}, \|\tilde{\mathbb{X}}^1\|_\alpha, \|\tilde{\mathbb{X}}^2\|_{2\alpha} \leq M.$$

Then the corresponding solutions Z, \tilde{Z} of $\textcircled{*''}$ satisfy

$$\|Z - \tilde{Z}\|_\infty + \|\delta Z - \delta \tilde{Z}\|_\alpha + \|Z^{[2]} - \tilde{Z}^{[2]}\|_{2\alpha}$$

$$\leq 32(DM+1) |Z_0 - \tilde{Z}_0| + 30M_0 \cdot d_\alpha(\mathbb{X}, \tilde{\mathbb{X}}).$$

provided $T > 0$ is small enough:

$$0 < T \leq T'_{\alpha, D, M_0, M} < \infty.$$

We omit the proof.

4- STOCHASTIC DIFFERENTIAL EQUATIONS

We now connect the ROUGH DIFFERENCE EQUATIONS (RDE) studied in the last chapter with the STOCHASTIC DIFFERENTIAL EQUATIONS (SDE) driven by Brownian Motion (BM) B . Indeed, both RDEs and SDEs are ways to give a meaning to the ill-defined differential equation

$$(*) \quad \dot{Y}_t = \sigma(Y_t) \dot{B}_t$$

Setting. Fix dimensions $d, k \in \mathbb{N}$, time horizon $T \in (0, \infty)$.

Consider a probability space (Ω, \mathcal{A}, P) on which is defined a standard Brownian Motion (BM) in \mathbb{R}^d

$B = (B_t)_{t \in [0, T]} = (B_t^{(i)})_{t \in [0, T], i=1, \dots, d}$ relative to a filtration $(\mathcal{F}_t)_{t \in [0, T]}$ - We fix a version of BM with continuous paths, so B is a (random) element of C^0 , in fact of C^α for any $\alpha \in (0, \frac{1}{2})$.

We fix $\alpha \in (\frac{1}{3}, \frac{1}{2})$.

Given $\sigma: \mathbb{R}^k \rightarrow \mathcal{L}(\mathbb{R}^d, \mathbb{R}^k) \simeq \mathbb{R}^{dk \times k}$ globally Lipschitz, i.e. $\|\nabla \sigma\|_\infty < \infty$, and given $y_0 \in \mathbb{R}^k$, we can consider the unique strong solution $Y = (Y_t)_{t \in [0, T]}$ of the SDE

$$(SDE) \quad Y_t = y_0 + \int_0^t \sigma(Y_u) dB_u \quad \text{for } t \in [0, T]$$

$$(i.e. Y_0 = y_0, dY_t = \sigma(Y_t) dB_t)$$

where the integral is a STOCHASTIC ITO INTEGRAL.

We fix a continuous version of $Y = (Y_t)_{t \in [0, T]}$.

In order to connect this solution to the RDE $(*)$, we need to introduce the ITO ROUGH PATH $\mathbb{B} = (\mathbb{B}^1, \mathbb{B}^2)$ associated to the BM B :

$$\mathbb{B}_{st}^1 = \delta B_{st} = B_t - B_s \quad \mathbb{B}_{st}^2 := \int_s^t \delta B_{su} \otimes dB_u \\ := I_t - I_s - B_s \otimes (B_t - B_s)$$

where $I_t = \int_0^t B_u \otimes dB_u$ (Ito integral) and we fix a version of $I = (I_t)_{t \in [0, T]}$ with continuous paths.

Theorem (ITO ROUGH PATH) Fix $\alpha \in (\frac{1}{3}, \frac{1}{2})$ and let B be BM in \mathbb{R}^d . Then, a.s., $\mathbb{B} = (\mathbb{B}^1, \mathbb{B}^2)$ is an α -ROUGH PATH over B , i.e.

- $\mathbb{B}_{st}^1 = \delta B_{st} \quad \delta \mathbb{B}_{sut}^2 = \mathbb{B}_{su}^1 \otimes \mathbb{B}_{ut}^1 \quad \forall 0 \leq s < u < t$
- $|\mathbb{B}_{st}^1| \lesssim (t-s)^\alpha \quad |\mathbb{B}_{st}^2| \lesssim (t-s)^{2\alpha}$
 $\lesssim C \cdot (t-s)^\alpha \quad \lesssim C^2 (t-s)^{2\alpha}$

(where the implicit constants in \lesssim are random).

Note that $\mathbb{B}_{st}^2 \in \mathbb{R}^d \otimes \mathbb{R}^d$ i.e.

$$(\mathbb{B}_{st}^2)^{ij} = \int_s^t (B_j^{(i)} - B_s^{(i)}) dB_j^{(j)}$$

Diagonal components:

$$\begin{aligned} (\mathbb{B}_{st}^2)^{ii} &= \int_s^t B_j^{(i)} dB_j^{(i)} - B_s^{(i)} (B_t^{(i)} - B_s^{(i)}) \\ &= \frac{(B_t^{(i)})^2 - (B_s^{(i)})^2 - (t-s)}{2} - B_s^{(i)} (B_t^{(i)} - B_s^{(i)}) \\ &= \frac{(B_t^{(i)} - B_s^{(i)})^2}{2} - (t-s) \quad \lesssim (t-s)^{2\alpha} \\ &\quad (\alpha < \frac{1}{2}) \end{aligned}$$

We can now consider the RDE driven by \mathbb{B} :

$$(RDE) \quad dY_{st} = \sigma(Y_s) \mathbb{B}_{st}^1 + \sigma_2(Y_s) \mathbb{B}_{st}^2 + o(t-s), \quad Y_0 = y_0$$

Theorem (SDE & RDE) If $\sigma \in C^2$, then a.s, any solution $Y = (Y_t)_{t \in [0, T]}$ of (RDE) is also a solution of (SDE).

If moreover $\sigma \in C^3$ and σ and σ_2 are globally Lipschitz, then a.s. both (SDE) and (RDE) have a unique solution $Y = (Y_t)_{t \in [0, T]}$ and these solutions coincide.

Corollary - Assume $\sigma \in C^3$ and $\|\nabla \sigma\|_\infty, \|\nabla \sigma_2\|_\infty < \infty$.

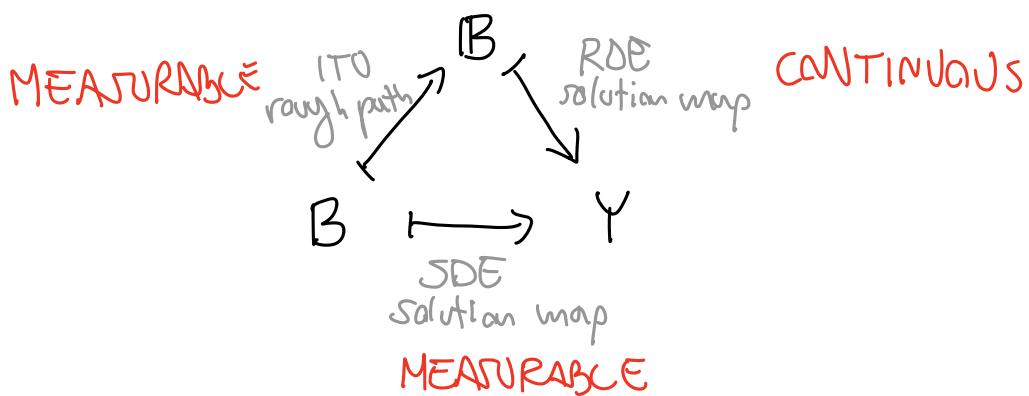
Then, a.s., the solution of (SDE) is the only path $Y = (Y_t)_{t \in [0, T]}$ which solves (RDE). Thus there exists an event A with $P(A) = 1$ such that $\forall \omega \in A$ there is a unique path $Y = (Y_t)_{t \in [0, T]}$ such that

$$\delta Y_{st} = \sigma(Y_s) dB^1_{st}(\omega) + \sigma_2(Y_s) dB^2_{st}(\omega) + o(t-s)$$

unif. for $0 \leq s < t \leq T$

and such path $Y = Y(\omega)$ solves (SDE).

In general, the solution Y of a SDE is only a measurable function of the driving BM B - The gain we obtain from the theory of RDE is to factorize such a measurable map as a composition of two maps:



The key tool is the following result.

Theorem (LOCAL EXPANSION OF STOCHASTIC INTEGRALS)

Let $B = (B_t)_{t \in [0, T]}$ be a BM in \mathbb{R}^d , let $\mathbb{B} = (\mathbb{B}^1, \mathbb{B}^2)$ be the associated Itô rough path. Fix $\alpha \in (\frac{1}{3}, \frac{1}{2})$.

Let $h = (h_t)_{t \in [0, T]}$ a continuous, adapted process, $h: [0, T] \rightarrow \mathcal{L}(\mathbb{R}^d, \mathbb{R}^k)$. Define, for $I_0 \in \mathbb{R}^k$,

$$I_t := I_0 + \int_0^t h_u \, dB_u \quad (\text{continuous version})$$

(1) a.s. $I = (I_t)_{t \in [0, T]} \in \mathcal{C}^\alpha$, i.e.

$$\delta I_{st} \lesssim (t-s)^\alpha \quad 0 \leq s < t \leq T.$$

↓
random constant

(2) Assume that $\delta h_{sr} \lesssim (r-s)^\beta$ for some $\beta \in (0, 1]$, i.e. a.s. $h \in \mathcal{C}^\beta$. Then, a.s.

$$|\delta I_{st} - h_s \cdot \mathbb{B}_{st}^1| = \left| \int_s^t \delta h_{su} \, dB_u \right| \lesssim (t-s)^{\alpha+\beta}.$$

(3) Assume that a.s. $|\delta h_{sr} - h_s^1 \mathbb{B}_{sr}^1| \lesssim (r-s)^{\alpha+\gamma}$, $\gamma \in (0, 1]$, for some $h^1 = (h_t^1)_{t \in [0, T]} \in \mathcal{C}^\gamma$. Then, a.s.

$$|\delta I_{st} - h_s \cdot \mathbb{B}_{st}^1 - h_s^1 \mathbb{B}_{st}^2| = \left| \int_s^t (\delta h_{su} - h_s^1 \mathbb{B}_{su}^1) \, dB_u \right| \lesssim (t-s)^{\alpha+\gamma}$$