

Reminders.

- $B = (B_t)_{t \in [0, T]}$ standard Brownian motion in \mathbb{R}^d (continuous paths)

$$\text{def. } \mathbb{B}_{st}^1 := \delta B_{st} = B_t - B_s$$

- $\mathbb{B}_{0t}^2 := \int_0^t B_s \otimes dB_s$ Ito integral (continuous paths)

$$\begin{aligned} \text{def. } \mathbb{B}_{st}^2 &:= \mathbb{B}_{0t}^2 - \mathbb{B}_{0s}^2 - B_s \otimes (B_t - B_s) \\ &= \int_s^t \delta B_{su} \otimes dB_u \end{aligned}$$

Theorem ①. For any $\alpha \in (\frac{1}{3}, \frac{1}{2})$, a.s. $\mathbb{B} = (\mathbb{B}^1, \mathbb{B}^2)$ is an α -rough path over B , i.e. $\forall s < u < t$

$$\bullet \mathbb{B}_{st}^1 = \delta B_{st} \quad \mathbb{S} \mathbb{B}_{s0t}^2 = \mathbb{B}_{su}^1 \otimes \mathbb{B}_{ut}^1 \quad (\text{CHEN'S REACTION})$$

$$\bullet |\mathbb{B}_{st}^1| \lesssim (t-s)^\alpha \quad |\mathbb{B}_{st}^2| \lesssim (t-s)^{2\alpha}$$

Fix $\mathcal{G}: \mathbb{R}^\kappa \rightarrow \mathcal{L}(\mathbb{R}^d, \mathbb{R}^\kappa)$ of class C^1 and def

$$\mathcal{G}_2(z) := \nabla \mathcal{G}(z) \sigma(z) \quad \forall z \in \mathbb{R}^\kappa$$

Consider the ROUGH DIFFERENTIAL EQ. (RDE)

$$(RDE) \quad \delta Y_{st} = \mathcal{G}(Y_s) \mathbb{B}_{st}^1 + \mathcal{G}_2(Y_s) \mathbb{B}_{st}^2 + \sigma(t-s)$$

unit. for $0 \leq s \leq t \leq T$

Compare it to the STOCHASTIC DIFFERENTIAL EQ (SDE)

$$(SDE) \quad dY_t = \sigma(Y_t) dB_t \Leftrightarrow Y_t = Y_0 + \int_0^t \sigma(Y_s) dB_s \quad \text{for } 0 \leq s \leq T$$

Theorem ② (SDE & RDE) : If $\sigma \in C^2$, then given a solution $Y = (Y_t)_{t \in [0, T]}$ of (SDE), a.s. Y solves (RDE).

Moreover, if $\sigma \in C^3$ with σ and σ_2 globally Lipschitz, then (SDE) and (RDE) have both existence and uniqueness of solutions, for any given initial datum $y_0 \in \mathbb{R}$, and these solutions coincide a.s.

Everything is based on the following key result.

Theorem ③ For $h = (h_s)_{s \in [0, T]}$ a **continuous**, adapted process, consider the Itô integral (continuous version of)

$$I_t = I_0 + \int_0^t h_s dB_s \quad h_s \in \mathcal{L}(\mathbb{R}^d, \mathbb{R})$$

Fix any $\alpha \in (\frac{1}{3}, \frac{1}{2})$

(a) a.s. $I \in C^\alpha$, that is for $0 \leq s < t \leq T$

$$|\delta I_{st}| \underset{\sim}{\sim} (t-s)^\alpha \quad \begin{aligned} & C < \infty \text{ a.s.} \\ & \leq C(\omega) (t-s)^\alpha \end{aligned}$$

$$\text{Note now that } S\bar{I}_{st} = \int_s^t h_u dB_u$$

$$\Rightarrow S\bar{I}_{st} - h_s (B_t - B_s) = \int_s^t (\underbrace{h_u - h_s}_{B_{st}^1}) \underbrace{dB_u}_{\delta h_{su}}$$

(b) If a.s. $h \in C^\beta$, i.e. $|\delta h_{su}| \lesssim (u-s)^\beta$, for some $\beta \in (0, 1]$, then a.s.

$$|S\bar{I}_{st} - h_s B_{st}^1| \lesssim (t-s)^{\alpha+\beta}$$

Now we go one step further:

(c) If a.s. $|\delta h_{su} - h_s^1 B_{su}^1| \lesssim (u-s)^{\alpha+\gamma}$, for some $\gamma \in (0, 1]$ and for some adapted $h^1 = (h_u^1)_{u \in [0, T]} \in C^\gamma$, then a.s.

$$\begin{aligned} & |\delta S\bar{I}_{st} - h_s B_{st}^1 - h_s^1 B_{st}^2| \lesssim (t-s)^{2\alpha+\gamma} \\ & \underbrace{\int_s^t \delta h_{su} dB_u}_{\int_s^t \delta B_{su} dB_u} - \underbrace{h_s^1 \int_s^t \delta B_{su} dB_u}_{\int_s^t \{ \delta h_{su} - h_s^1 \delta B_{su} \} dB_u} \\ & \lesssim (u-s)^{\alpha+\gamma} \leq (t-s)^{\alpha+\gamma} \end{aligned}$$

L

Proof of Theorem ① We show that, a.s., $\mathbb{B} = (\mathbb{B}^1, \mathbb{B}^2)$ is an α -rough path, for any $\alpha \in (\frac{1}{2}, \frac{1}{3})$.

• ALGEBRAIC RELATIONS: $\mathbb{B}_{st}^1 = \delta B_{st}$ by definition

CHEN'S RELATION: Fix $i, j \in \{1, 2\}$ and $s < u < t$:

$$\begin{aligned}
 \delta(\mathbb{B}^2)_{sut}^{ij} &= (\mathbb{B}^2)_{st}^{ij} - (\mathbb{B}^2)_{su}^{ij} - (\mathbb{B}^2)_{ut}^{ij} \\
 &= \int_s^t \delta B_{sr}^i dB_r^j - \int_s^u \delta B_{sr}^i dB_r^j - \int_u^t \delta B_{ur}^i dB_r^j \\
 &= \int_u^t \delta B_{sr}^i dB_r^j - \int_u^t \delta B_{ur}^i dB_r^j \\
 &= \int_u^t (\underbrace{\delta B_{sr}^i - \delta B_{ur}^i}_{\delta B_{su}^i}) dB_r^j \\
 &= \delta B_{su}^i \cdot \int_u^t 1 dB_r^j = \underbrace{\delta B_{su}^i}_{(\mathbb{B}^1)_{su}^i} \cdot \underbrace{\delta B_{ut}^j}_{(\mathbb{B}^1)_{ut}^j}
 \end{aligned}$$

This holds a.s., given any fixed $s < u < t$.

Then it holds a.s. simultaneously $\forall s < u < t \in \mathbb{Q}$, hence $\forall s < u < t \in \mathbb{R}$ by continuity of both sides in s, u, t .

ANALYTIC BOUNDS :

- $|B_{st}^2| = |\delta B_{st}| \lesssim (t-s)^\alpha$ by Theorem ③ (a)
choosing $\beta = 1$.
- $|(\bar{B}^2)_{st}^{ij}| = \left| \int_s^t \delta B_{su}^i dB_u^j \right| = \left| \int_s^t B_u^i dB_u^j - B_s^i \delta B_{st}^j \right|$
 $\lesssim (t-s)^{2\alpha}$ by Theorem ③ (b)
choosing $\beta = B^i$

Proof of Theorem ② If suffice to show the first part: assume $\sigma \in C^2$, fix Y a solution of (SDE) and we show that, a.s., Y solves (RDE) -

Fix $0 \leq s < t \leq T$ and compute

$$\begin{aligned}
 \delta Y_{st} - \underbrace{\sigma(Y_s) dB_{st}^1}_{Y_t - Y_s = \int_s^t \sigma(Y_j) dB_j} - \sigma_2(Y_s) dB_{st}^2 \\
 = \sigma(Y_s) (B_t - B_s) = \int_s^t \sigma(Y_s) dB_0 \\
 (\text{SDE})
 \end{aligned}$$

$$I = \int_s^t \left\{ \delta \sigma(Y)_{s \cup} - \sigma_2(Y_s) \delta B_{s \cup} \right\} dB_{s \cup} = \star$$

We claim that a.s. $\left\{ \dots \right\} \lesssim (s-u)^{2\alpha}$ A.s.s.v.e.t.

Then we can apply Theorem ③ (c) with $h = \sigma(Y)$ and $h^1 = \sigma_2(Y)$, with $\gamma = \alpha$, to get

a.s. $\star \lesssim (t-s)^{3\alpha} = o(t-s)$ since $\alpha > \frac{1}{3}$.

If a.s. $|\delta h_{s \cup} - h_s^1 B_{s \cup}^1| \lesssim (u-s)^{\alpha+\gamma}$, for some $\gamma \in (0, 1]$ and for some adapted $h^1 = (h_j^1)_{0 \leq j \leq T} \in \mathcal{C}^1$, then a.s.

$$|\delta I_{st} - h_s^1 B_{st}^1 - h_s^1 B_{st}^2| \lesssim (t-s)^{2\alpha+\gamma}$$

It remain to prove the claim:

a.s. $|\delta \sigma(Y)_{st} - \sigma_2(Y_s) B_{st}^1| \lesssim (t-s)^{2\alpha}$

By Ito formula $[dI_{s \cup}^1 = \sigma(Y_s) dB_{s \cup}]$

$$\begin{aligned} \sigma(Y_t) &= \sigma(Y_0) + \int_0^t \nabla \sigma(Y_j) dY_j + \frac{1}{2} \int_0^t \nabla^2 \sigma(Y_j) \cdot d\langle Y, Y \rangle_j \\ &= \sigma(Y_0) + \int_0^t \sigma_2(Y_j) dB_j + \frac{1}{2} \int_0^t \nabla^2 \sigma(Y_j) \cdot (\sigma \sigma^t)(Y_j) d\langle Y, Y \rangle_j \end{aligned}$$

$\rho(u)$

$$\text{Then } \delta \sigma(Y)_{st} = \sigma(Y_t) - \sigma(Y_s) \\ = \int_s^t \sigma_2(Y_u) dB_u + \frac{1}{2} \int_s^t p(u) du$$

$$\text{Finally } \delta \sigma(Y)_{st} = \sigma_2(Y_s) B_{st}^1 \\ = \int_s^t \{ \sigma_2(Y_u) - \sigma_2(Y_s) \} dB_u + \frac{1}{2} \int_s^t p(u) du \\ A_{st} \quad \quad \quad O(t-s) \lesssim (t-s)^{\alpha}$$

because p is continuous,
hence locally bounded

We can now apply again Theorem ③ (b) with
 $h = \sigma_2(Y)$ which satisfies, a.r., the C^α : indeed

$$|\delta h_{st}| = |\sigma_2(Y_t) - \sigma_2(Y_s)| \lesssim \|\sigma_2\|_\infty |\delta Y_{st}| \lesssim (t-s)^\alpha$$

$$|\delta Y_{st}| = \left| \int_s^t \sigma(Y_u) dB_u \right| \lesssim (t-s)^\alpha \text{ by Theorem ③ (a)}$$

$$\Rightarrow |A_{st}| = \left| \int_s^t (\delta h_{su}) dB_u \right| \lesssim (t-s)^{2\alpha}.$$

□

We now explain how to prove Theorem ③ -
All the results (a) (b) (c) are of the form

$$|A_{st}| \lesssim (t-s)^\alpha$$

for suitable choice of A_{st} and γ .

We then fix a (later random) **continuous** function $A: [0, T]^2 \rightarrow \mathbb{R}$, that is $A = (A_{st})_{0 \leq s, t \leq T}$.

For notational simplicity $T=1$.

By continuity, it is enough to prove that

$$\textcircled{\ast} \quad |A_{st}| \leq C \cdot (t-s)^\gamma \quad \forall s, t \in \mathbb{D}$$

where $\mathbb{D} \subseteq [0, 1]$ is the set of dyadic rationals:

$$\mathbb{D} = \bigcup_{k=0}^{\infty} \mathbb{D}_k \quad \mathbb{D}_k = \left\{ t_i^k := \frac{i}{2^k}, \quad 0 \leq i \leq 2^k \right\}$$

Let us write $d \rightarrow d'$ to mean that $d, d' \in \mathbb{D}$ are consecutive dyadic rationals in same \mathbb{D}_k , i.e.

$$d \rightarrow d' \iff \exists k \in \mathbb{N}_0, i \in \{0, \dots, 2^k - 1\}: d = \frac{i}{2^k}, \quad d' = \frac{i+1}{2^k}$$

It turns out that, if we can prove $\textcircled{\ast}$ for $s=d, t=d'$ with $d \rightarrow d'$, and if we can bound $\delta A_{s,t}$ $\forall s < t \in \mathbb{D}$, then we can deduce $\textcircled{\ast} \quad \forall s, t \in \mathbb{D}$.

More precisely, we have:

Theorem (KOLMOGOROV CRITERION, DETERMINISTIC PART) (Kol1)

Assume that $A: \mathbb{D}_{\leq}^2 \rightarrow \mathbb{R}$ satisfies, for some $0 < \rho < \delta$,

$$\bullet \quad Q_\delta := \sup_{d, d' \in \mathbb{D}: d \rightarrow d'} \frac{|A_{d, d'}|}{|d' - d|^\delta} < \infty$$

$$\Leftrightarrow |A_{d, d'}| \leq Q_\delta (d' - d)^\delta \quad \forall d \rightarrow d'$$

$$\bullet \quad K_{\rho, \delta} := \sup_{s < t \in \mathbb{D}} \frac{|\delta A_{s, t}|}{\min\{s-t, t-s\}^\rho (t-s)^{\delta-\rho}} < \infty$$

$$|\delta A_{s, t}| \leq K_{\rho, \delta} \cdot \min\{s-t, t-s\}^\rho (t-s)^{\delta-\rho} \leq K_{\rho, \delta} \cdot (\epsilon - s)^\delta$$

Then there is a universal explicit $C_{\rho, \delta} < \infty$ such that

$$|A_{s, t}| \leq C_{\rho, \delta} (Q_\delta + K_{\rho, \delta}) (t-s)^\delta \quad \forall s < t \in \mathbb{D}.$$

We complement the previous result with a criterion to check that $Q_\delta < \infty$, that is to prove $|A_{d, d'}| \leq (d' - d)^\delta$ for consecutive dyadic rationals $d \rightarrow d'$, when A is random and we can bound its moments.

(This implies the classical Kolmogorov criterion)

Theorem (KOLMOGOROV CRITERION, RANDOM PART). (Kol2)
 Let $A: \mathbb{D}_s^2 \rightarrow \mathbb{R}$ be random and satisfy

$$\mathbb{E}[|A_{st}|^p] < c(t-s)^{p\gamma_0} \quad \forall s < t \in \mathbb{D}$$

for some $p, \gamma_0, c \in (0, \infty)$. Then

$$\mathbb{E}[|Q_\gamma(A)|^p] < \infty \quad \forall \gamma < \gamma_0 - \frac{1}{p},$$

$\sup_{\substack{d \rightarrow d' \\ d < d' \in \mathbb{D}}} \frac{|A_{dd'}|}{(d'-d)^\gamma}$

hence $Q_\gamma(A) < \infty$ a.s. Hence, if also $K_{p,\gamma}(A) < \infty$,
 a.s. $|A_{st}| \lesssim (t-s)^\gamma \quad \forall s < t \in \mathbb{D}$.

Proof. $|Q_\gamma(A)|^p \leq \sum_{\substack{d < d' \in \mathbb{D} \\ d \rightarrow d'}} \left(\frac{|A_{dd'}|}{(d'-d)^\gamma} \right)^p$

$$= \sum_{k=0}^{\infty} \sum_{i=0}^{2^k-1} \frac{|A_{\frac{i}{2^k} \frac{i+1}{2^k}}|}{\left(\frac{1}{2^k}\right)^{\gamma p}}^p$$

Then $\mathbb{E}[|Q_\gamma(A)|^p] \leq \sum_{k=0}^{\infty} \sum_{i=0}^{2^k-1} \frac{\left(\frac{1}{2^k}\right)^{p\gamma_0}}{\left(\frac{1}{2^k}\right)^{\gamma p}} = \sum_{k=0}^{\infty} \left(\frac{1}{2^k}\right)^{p(\gamma_0-\gamma)-1} < \infty$

as long as $p(\gamma_0-\gamma)-1 > 0 \iff \gamma_0-\gamma > \frac{1}{p} \iff \gamma < \gamma_0 - \frac{1}{p}$ \blacksquare

We finally apply this refined Kolmogorov criterion to prove Theorem 3 -

Proof of Theorem 3 -

$$(a) \quad I_t - I_s = \int_s^t h_u \, dB_u$$

$$\text{Consider } A_{st} := I_t - I_s = SI_{st}$$

Plainly $SA = 0$ hence $K_{p,\gamma}(A) = 0$ thus

$$\left[\begin{array}{l} \text{by Kol(1)} \\ \text{with } \gamma = \alpha \end{array} \right] \quad |I_t - I_s| = |A_{st}| \lesssim Q_\alpha(A) \cdot (t-s)^\alpha$$

It remains to show that $Q_\alpha(A) < \infty$ a.s., which we deduce by Kol(2).

We may assume that $|h_u(\omega)| \leq C < \infty$.

(Indeed, in the general case we argue by localisation, defining the stopping times

$$\tilde{\tau}_n := \inf \{u \in [0, T] : |h_u| > n\}$$

and working with the bounded process $\tilde{h}_u := h_u \cdot \mathbb{1}_{[0, \tilde{\tau}_n]}$)

Assuming $|h_0(\omega)| \leq C < \infty$, we apply Kol(2):

$$\mathbb{E} \left[|Q_\gamma(A)|^p \right] < \infty \quad \text{if} \quad \mathbb{E} [|A_{st}|^p] \leq (t-s)^{p\gamma_0}$$

$$\text{for } \gamma < \gamma_0 - \frac{1}{p}$$

$$\text{To estimate } \mathbb{E} [|A_{st}|^p] = \mathbb{E} [|S_{st}|^p] = \mathbb{E} \left[\left| \int_s^t h_0 dB_u \right|^p \right]$$

we apply the Burkholder-Davis-Gundy inequality:

$$\begin{aligned} \mathbb{E} \left[\left| \int_s^t h_0 dB_u \right|^p \right] &\lesssim \mathbb{E} \left[\left| \int_s^t h_0 dB_u \right|^2 \right]^{p/2} \\ &= \mathbb{E} \left[\int_s^t h_0^2 du \right]^{p/2} \end{aligned}$$

$$\left[|h_0| \leq C \right] \subseteq C^p \cdot \underbrace{(t-s)^{p/2}}_{(t-s)^{p\gamma_0}} \quad \forall p \in [2, \infty) \quad \gamma_0 = \frac{1}{2}$$

$$\begin{aligned} \text{We then have } Q_\gamma(A) &< \infty \text{ a.s.}, \quad \forall \gamma < \gamma_0 - \frac{1}{p} \\ &= \frac{1}{2} - \frac{1}{p} \end{aligned}$$

Taking p large, we get $Q_\alpha(A) < \infty$ a.s. $\forall \alpha < \frac{1}{2}$.