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Asusual we work on the time interval o T forfixed Tso
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Henceforth we focus on the regime α βE 1 ROUGH ASE

In this regime has in general ns solution
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The idea is to relax replacing oft s by
0 t s for some 1 By the previous example
a natural choice is 8 at β

Def Given a pe a 13 and Xee YEEP
we call a generalized atp integral of Y writix

any function I It teat it I o say and

SIst Ys rest 0 t s tβ



Remark If atp I we never have uniqueness
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In fact this describes ALL solutions of
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let us now revisit the concept of regh patter

Fix a path X fait Rd of class C with Iraq
x X

In order to define a notion of integral of the path
wirt itself we apply the definition above
i j e t yd we fix on 20 integral I's

of X want Xi that is I a soy and
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let us call the remounder
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is a za integral of X wait to v t holds

Prof Exerrive

In view of the previous result in order to define
an integral of X want 5 it is equivalent
to arvign a reminder which satisfies
This leads to the notion of ROUGH PATH that

he already gave and that we recall
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We arone that Y fait L Rd IR
The idea is that since we already know how
to integrate X writ X ie X want Xi Vii
thanks to the rough puth that we have fixed
we mayhope to be able to gie a CANONICAL

notion of integral for all paths Y which
locally look like X let us make the
latter ustion precise
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We can finally state our main result for today
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Finally for my te fait we have
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let us conclude Given an a ROUGH PATH KWIK
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enriched rough integral I I IE Y is a

20 controlled path Denotingby

DX i 20 controlled Patres by X

the rough integral definer a map from D
to itself

We note that D
d
is a LINEARSPACE which

becomes a BANACH SPACE equippedwith the norm
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We can show that the rough integral of I
is a CONTINUOUS MAP ON DE
Even more the jointmap X If to 1 is continuous

in fact lorally Lipschitz This lets one solve
integral equations drivenby rough paths by usual
thechinquey i e fixedpoint theorems

Recall the starting differential equation
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that we interpret as an integral equation

F t F a Fte olds

where Tat Ze ZE E D

and G Tot O Zt V0 Zt ZE

Note that if Io is a solution of Bo then

ZE 8 Zt

have a 7 t oft
V.ggy


