

As usual we work on the time interval $[0, T]$ for fixed $T > 0$.

Given a **GERM** $A = (A_{st})_{0 \leq s \leq t \leq T}$, we look for a corresponding **INTEGRAL** $I = (I_t)_{0 \leq t \leq T}$ which satisfies $I_0 = 0$ (say) and

$$\delta I_{st} = A_{st} + \underbrace{o(t-s)}_{R_{st}}$$

$$R_{st} := \delta I_{st} - A_{st} \quad \text{REMINDER}$$

If I exists, then it is **UNIQUE** (for a fixed germ A)

For existence of I , it is **necessary** that $\delta A_{sut} = o(t-s)$.

Remarkably, it is **sufficient** that $\delta A_{sut} = O((t-s)^\eta)$ for some $\eta > 1$

$$\Leftrightarrow \|\delta A\|_\eta < \infty \quad (\eta\text{-COHERENCE})$$

SEWING LEMMA: $\exists \eta > 1: \|\delta A\|_\eta < \infty \Rightarrow \exists I = (I_t) \text{ s.t. } \textcircled{A} \text{ holds.}$

SEWING BOUND: $R_{st} = O((t-s)^\eta) : \quad \|R\|_\eta \leq K_\eta \|\delta A\|_\eta$

$$\delta A_{sut} = - \delta Y_{su} \delta X_{ut}$$

YOUNG INTEGRAL: $\overset{\circ}{A}_{st} = Y_s \delta X_{st} \quad X \in \mathcal{C}^\alpha, \quad Y \in \mathcal{C}^\beta$

The germ A is $\eta = (\alpha + \beta)$ -COHERENT: if $\alpha + \beta > 1 \Rightarrow \exists I$:

$$\textcircled{A}' \quad \delta I_{st} = Y_s \delta X_{st} + \underbrace{o(t-s)}_{R_{st}} \quad " \quad I_t = \int_0^t Y_u dX_u "$$

$$R_{st} = O((t-s)^{\alpha + \beta})$$

Henceforth we focus on the regime $\alpha + \beta \leq 1$ (ROUGH CASE)

In this regime \star' has, in general, no solution!

Indeed, a necessary condition for the existence of a solution is $SA_{s,t} = o(t-s)$. But for $A_{s,t} = Y_s \delta X_{s,t}$

$$SA_{s,t} = -\delta Y_s \delta X_{s,t}$$

For $X \in \mathcal{C}^\alpha$, $Y \in \mathcal{C}^\beta$ we have $|SA_{s,t}| = O((t-s)^{\alpha+\beta})$ but, in general, not better! Indeed

$$X_t = t^\alpha, \quad Y_t = t^\beta \Rightarrow SA_{0,t,2t} = -t^\beta \cdot t^\alpha = -t^{\alpha+\beta} \neq o(2t-0) !$$

The idea is to relax \star' replacing $o(t-s)$ by $O((t-s)^\gamma)$ for some $\gamma \leq 1$. By the previous example, a natural choice is $\gamma = \alpha + \beta -$

Def- Given $\alpha, \beta \in (0, 1]$ and $X \in \mathcal{C}^\alpha$, $Y \in \mathcal{C}^\beta$, we call a generalized $(\alpha+\beta)$ -integral of Y w.r.t. X any function $I = (I_t)_{t \in [0, T]}$ s.t. $I_0 = 0$ (say) and

$$\star'' \quad SI_{s,t} = Y_s \delta X_{s,t} + O((t-s)^{\alpha+\beta}) .$$

Remark. If $\alpha + \beta \leq 1$, we never have uniqueness: indeed, if I solves \star'' , also $\tilde{I} := I + f$ with $f \in \mathcal{C}^{\alpha+\beta}$ solves \star'' , just because

$$\delta \tilde{I}_{st} = \delta I_{st} + \underbrace{\delta f_{st}}_{f_t - f_s = O((t-s)^{\alpha+\beta})}$$

In fact, this describes ALL SOLUTIONS of \star'' : given any two solutions I, \tilde{I} of \star'' , their difference $f := \tilde{I} - I$ satisfies

$$\delta f_{st} = \underbrace{\delta \tilde{I}_{st}}_{Y_s \delta X_{st} + O((t-s)^{\alpha+\beta})} - \underbrace{\delta I_{st}}_{i.e. f \in \mathcal{C}^{\alpha+\beta}} = O((t-s)^{\alpha+\beta})$$

Theorem (LYONS-VICTAIR). For any $\alpha, \beta \in (0, 1]$ and any $X \in \mathcal{C}^\alpha, Y \in \mathcal{C}^\beta$, there is a solution I of \star'' , i.e. I is an $(\alpha+\beta)$ -integral of Y w.r.t. X .

(We are assuming that X, Y are real valued!)

Remark. In the special case $\beta = \alpha$ and $X = Y$, we have a natural, explicit choice of (2α) -integral I of X w.r.t. X , namely $I_t := \frac{X_t^2}{2}$.

$$\begin{aligned}
 \text{Indeed } \delta I_{st} &= I_t - I_s = \frac{x_t^2 - x_s^2}{2} \\
 &= \frac{2x_s(x_t - x_s) + (x_t - x_s)^2}{2} \\
 &= x_s \cdot (x_t - x_s) + \underbrace{\frac{1}{2} (x_t - x_s)^2}_{Q((t-s)^{2\alpha})} \\
 &\quad \begin{aligned} a &= x_s \\ b &= x_t \end{aligned}
 \end{aligned}$$

Therefore ANY $(z\alpha)$ -integral of X w.r.t. X is given by

$$I_t = \frac{X_t^2}{2} + f_t \quad \text{for some } f \in \mathcal{C}^{2\alpha}.$$

Let us now revisit the concept of rough paths.

Fix a path $X: [0, T] \rightarrow \mathbb{R}^d$ of class C^2 with $\frac{1}{3} < \alpha \leq \frac{1}{2}$.

In order to define a notion of integral of the path w.r.t. itself, we apply the definition above: $\forall i, j \in \{1, \dots, d\}$ we fix an \mathbb{R}^d -integral I^{ij} of X^i w.r.t. X^j , that is $I_0^{ij} = 0$ (say) and

$$\text{SI}_{st}^{ij} = x_s^i \Delta x_{st}^j + O((t-s)^{2\alpha})$$

Let us call the remainder

⊗ $(X^2)_{st}^{ij} := S I_{st}^{ij} - X_s^i S X_{st}^j.$

Lemma. If I^{ij} is a 2α -integral of X^i w.r.t. X^j ,
then $(X^2)_{st}^{ij}$ satisfies

CHEN RELATION

⊗ $(X^2)_{st}^{ij} = O((t-s)^{2\alpha})$

$(S X^2)_{sut}^{ij} = S X_{su}^i S X_{ut}^j$

Vice versa, given any function $(X^2)_{st}^{ij}$ which
satisfies ⊗, there exists a unique I^{ij} which
is a (2α) -integral of X^i w.r.t. X^j s.t. ⊗ holds.

Proof. Exercise!

In view of the previous result, in order to define
an integral of X^i w.r.t. X^j , it is equivalent
to assign a "remainder" X^2 which satisfies ⊗.
This leads to the notion of ROUGH PATH that
we already gave and that we recall.

Def. Given $\alpha \in (\frac{1}{3}, \frac{1}{2}]$ and a path $X \in \mathcal{C}^\alpha(\mathbb{R}^d)$,
we call α -ROUGH PATH over X any $\mathbb{X} = (X^1, X^2)$
with $X^1 = ((X^1)_{st}^i)_{\substack{i=1, \dots, d \\ 0 \leq s \leq t \leq T}}$ and $X^2 = ((X^2)_{st}^{ij})_{\substack{i, j=1, \dots, d \\ 0 \leq s \leq t \leq T}}$

(i.e. $\mathbb{X}^1: [0, T]^2 \rightarrow \mathbb{R}^d$, $\mathbb{X}^2: [0, T]^2 \rightarrow \mathbb{R}^d \otimes \mathbb{R}^d$)

s.t. the following holds:

$$(i) \quad \mathbb{X}_{st}^1 = SX_{st} \quad \delta \mathbb{X}_{sut}^2 = \mathbb{X}_{su}^1 \otimes \mathbb{X}_{ut}^1$$

$$(\delta \mathbb{X}^2)_{sut}^{ij} = (\mathbb{X}^1)_{su}^i (\mathbb{X}^1)_{ut}^j$$

$$(ii) \quad |\mathbb{X}_{st}^1| = O((t-s)^\alpha) \quad |\mathbb{X}^2|_{st} = O((t-s)^{2\alpha})$$

$$\text{...e.} \quad \|\mathbb{X}^1\|_\alpha < \infty \quad \|\mathbb{X}^2\|_{2\alpha} < \infty$$

Keep in mind: $(\mathbb{X}^2)_{st}^{ij} = \mathbb{I}_{st}^{ij} - X_s^i S X_{st}^j$
 $= \int_s^t (X_u^i - X_s^i) dX_u$

Henceforth we fix a path $X \in \mathcal{C}^\alpha$, with $\frac{1}{3} < \alpha \leq \frac{1}{2}$,
and a α -ROUGH PATH $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ over X .

How to define a notion of integral

$$\left(\int_0^t Y_u dX_u \right)$$

for a reasonably large class of paths $Y = (Y_u)$?

We assume that $Y: [0, T] \rightarrow \mathcal{L}(\mathbb{R}^d, \mathbb{R}^n)$.

The idea is that, since we already know how to integrate X w.r.t. X (i.e. X^i w.r.t. X^j $\forall i, j$), thanks to the rough path \mathbb{X} that we have fixed, we may hope to be able to give a CANONICAL notion of integral for all paths Y which locally "look like X ". Let us make the latter notion precise.

Def - (CONTROLLED PATHS) - Fix $l \in \mathbb{N}$. Fix $\alpha \in \left(\frac{1}{3}, \frac{1}{2}\right]$ and a path $X \in \mathcal{C}^\alpha(\mathbb{R}^d)$ (actually its increments $\mathbb{X}'_{st} = \delta X_{st}$). Also fix $\eta \in (0, 1]$. We call $(\alpha + \eta)$ -PATH CONTROLLED BY X any pair (Y, Y') where $Y: [0, T] \rightarrow \mathbb{R}^l$ and $Y': [0, T] \rightarrow \mathcal{L}(\mathbb{R}^d, \mathbb{R}^l)$ such that $Y \in \mathcal{C}^\alpha$, $Y' \in \mathcal{C}^\eta$ and

$$\delta Y_{st} = Y'_s \delta X_{st} + O((t-s)^{\alpha+\eta})$$

We call Y' a derivative of Y w.r.t. X .

It is also useful to introduce the "remainder"

$$Y^{[2]}_{st} := \delta Y_{st} - Y'_s \delta X_{st} = O((t-s)^{\alpha+\eta})$$

We can finally state our main result for today.

Theorem - Fix $d, k \in \mathbb{N}$, Fix $\alpha \in (\frac{1}{3}, \frac{1}{2}]$ and a α -rough path $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$. Fix $\gamma \in (0, 1]$ and a $(\alpha + \gamma)$ -controlled path $\mathbb{Y} = (Y, Y')$ where $Y : [0, T] \rightarrow \mathcal{L}(\mathbb{R}^d, \mathbb{R}^k) \simeq \mathbb{R}^{d \times k}$ and $Y' : [0, T] \rightarrow \mathcal{L}(\mathbb{R}^d \otimes \mathbb{R}^d, \mathbb{R}^k) \simeq \underbrace{\mathcal{L}(\mathbb{R}^d, \mathcal{L}(\mathbb{R}^d, \mathbb{R}^k))}_{\simeq \mathbb{R}^{d \times d \times k}}$

Then the following germ

$$A_{st} = Y_s \mathbb{X}_{st}^1 + Y'_s \mathbb{X}_{st}^2$$

is $(2\alpha + \gamma)$ -COHERENT. Therefore, if $2\alpha + \gamma > 1$, there exists a unique "integral" $I = (I_t)_{t \in [0, T]}$ of the germ A , that is I satisfies $I_0 = 0$ and

$$SI_{st} = \underbrace{Y_s \mathbb{X}_{st}^1 + Y'_s \mathbb{X}_{st}^2}_{A_{st}} + O((t-s)^{2\alpha + \gamma})$$

We call I the ROUGH INTEGRAL of the controlled path \mathbb{Y} w.r.t. the rough path \mathbb{X} .

We may write $I_t = \int_0^t \mathbb{Y} d\mathbb{X}$ or $I_t = \int_0^t Y_u dX_u$.

Finally, for any $t \in [0, T]$ we have

$$I_t = \lim_{|\mathcal{P}| \rightarrow 0} \sum_{i=0}^{\#\mathcal{P}-1} (Y_{t_i} \mathbb{X}_{t_i t_{i+1}}^1 + Y_{t_i}^1 \mathbb{X}_{t_i t_{i+1}}^2)$$

Proof - We only need to check the coherence of A :

$$A_{st} = Y_s \mathbb{X}_{st}^1 + \underbrace{Y_s^1 \mathbb{X}_{st}^2}_{\delta X_{st}}$$

$$\begin{aligned} \delta A_{sut} &= -\delta Y_{su} \mathbb{X}_{ut}^1 - \delta Y_{su}^1 \mathbb{X}_{ut}^2 + Y_s^1 \underbrace{\delta \mathbb{X}_{sut}^2}_{\mathbb{X}_{su}^1 \otimes \mathbb{X}_{ut}^1} \\ &= -\underbrace{(\delta Y_{su} - Y_s^1 \mathbb{X}_{su}^1)}_{Y_{su}^{[2]}} \mathbb{X}_{ut}^1 - \underbrace{\delta Y_{su}^1 \mathbb{X}_{ut}^2}_{O((u-s)^\gamma)} O((t-u)^{2\alpha}) \\ &= O((t-s)^{2\alpha+\gamma}) \quad \text{i.e. } A \text{ is } (2\alpha+\gamma)\text{-coh.} \end{aligned}$$

Motivation: how to define $I_t = \int_0^t Y_u dX_u$?

$$\begin{aligned} \delta I_{st} &= I_t - I_s = \int_s^t Y_u dX_u = Y_s \cdot \delta X_{st} + \int_s^t (Y_u - Y_s) dX_u \\ &= Y_s \cdot \delta X_{st} + \int_s^t Y_s^1 \delta X_{su}^1 dX_u + \int_s^t Y_{su}^{[2]} dX_u \end{aligned}$$

$$\text{Thus } \delta I_{st} = \underbrace{Y_s \delta X_{st} + Y_s^1 \mathbb{X}_{st}^2}_{A_{s,t}} + R_{st}$$

$$\text{with } R_{st} = " \int_s^t \underbrace{Y_{su}^{[2]}}_{\alpha+y} \underbrace{dX_u}_{\alpha} "$$

$$\text{Hope: } R_{st} = O((t-s)^{2\alpha+\eta}) \quad ? \quad ..$$

Let us conclude. Given an α -ROUGH PATH $\mathbb{X} = (\mathbb{X}', \mathbb{X}'')$ and a $(\alpha+\eta)$ -CONTROLLED PATH $\mathbf{Y} = (Y, Y')$, we defined the ROUGH INTEGRAL $\mathbf{I} = (I_t)_{t \in [0, t]}$, assuming $2\alpha + \eta > 1$.

$$\begin{aligned} \text{By construction } \delta I_{st} &= Y_s \delta X_{st} + Y_s^1 \underbrace{\mathbb{X}_{st}^2}_{O((t-s)^{2\alpha})} + O((t-s)^{2\alpha+\eta}) \\ &\stackrel{!}{=} Y_s \delta X_{st} + O((t-s)^{2\alpha}) \end{aligned}$$

which means that the pair $\mathbf{I} = (I, I^1 = Y)$ is a (2α) -CONTROLLED PATH - let us set

$$\mathbf{I} = \int \mathbf{Y} d\mathbb{X}$$

If we fix from the beginning $\eta = \alpha$, i.e. we fix a 2α -controlled path $\mathbf{Y} = (Y, Y')$, then assuming $2\alpha + \eta = 3\alpha > 1$, i.e. $\alpha > \frac{1}{3}$, we have that also the

(enriched) rough integral $\mathbf{I} = (I, I^1 = Y)$ is a (2α) -controlled path. Denoting by

$$D_X^{2\alpha} := \{ \text{2\alpha-controlled paths by } X \}$$

The rough integral defines a map from $D_X^{2\alpha}$ to itself.

We note that $D_X^{2\alpha}$ is a LINEAR SPACE which becomes a BANACH SPACE equipped with the norm for $Y = (Y, Y')$:

$$\|Y\|_{D_X^{2\alpha}} := |Y_0| + |Y'_0| + [Y]_{D_X^{2\alpha}}$$

$$[Y]_{D_X^{2\alpha}} := \|\delta Y'\|_\infty + \|Y^{[2]}\|_{2\alpha}$$

We can show that the rough integral $Y \mapsto I$ is a CONTINUOUS MAP on $D_X^{2\alpha}$.

Even more, the joint map $(X, Y) \mapsto I$ is continuous, in fact locally Lipschitz. This lets one solve integral equations driven by rough paths by usual techniques, i.e. fixed point theorems.

Recall the starting differential equation:

$$\dot{z}_t = \sigma(z_t) \dot{x}_t$$

that we interpret as an integral equation

$$\mathbf{Z}_t - \mathbf{Z}_0 = \mathbf{I}_t(\sigma(\mathbf{Z}), \mathbb{X})$$

where $\mathbf{Z}_t = (z_t, z_t^1) \in \mathcal{D}_X^{2\alpha}$

and $\sigma(\mathbf{Z}_t) := (\sigma(z_t), \nabla \sigma(z_t) \cdot z_t^1)$

Note that if \mathbf{Z} is a solution of \mathcal{B} , then

$$z_t^1 = \sigma(z_t)$$

hence $\sigma(\mathbf{Z}_t) = (\sigma(z_t), \underbrace{\nabla \sigma(z_t) \cdot \sigma(z_t)}_{\sigma_2(z_t)})$.