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1) Main result to present

Regerative processes
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Rough invariance principles
Goal : Discun tools
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"UCV condition "

AssumeExJof
Ther

(X ?, M!, F.
(Xn ,M")&

IX., B ., I . (X, B) in D,

where mod EIP , law3·

Martingale invariance principle
[KL0 - Fluctuations in Markov Processes
Thm 2.26

Assume (MHteto
,%) is a

d-dimension

cadlag martingale , withgood filtrator
↑

Tie satisfies the "usual conditionsit



Assume : M is square integrable
with stationary increments
Ftso

,
meN

,
seasic... Sn

MMsos, -- , Msmsa) and

(Me+softs , ---, Metsutsu) have the

same distribution.

Let (Mi ,mix)ij
. ...,
I
be

the predictible covariation proces
Assume

imand[mimi
t- & ij



Then

M
law , ZB inD

Theorem (Rough Mat. (P)
In the condiens above , Xp 2

↓
Ito lift

(M(
,
/MM) law,(p, /) inDo

where B = z"B
t

Bsit = SBsudBu
51



Proof

D By classical Mart .
I

.
P

Mm law , B in D

② By Kurtz-Protter

[Ma , Mo!) &B ., Bo ,
7

in D.

③ By p-van Lepingle-BDOg
p>z

El (4, (MMP1/p-ver
,Fo , +]] -cE[XM+]

"



TIZ llsup =: Tmax/girl
i , je E , ...,d]

=> tightness

=> conclude. As

emeFrizzans
a
e.

CXnY
,
In : Quite , (usturn)ne...., wDEN·id

key identify Set En:= Xin ,
neNo

Then :

[S(X,X) := I (z ,+A
Anti int


