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Homogenisation of a random potential

> Consider the linear heat equation with a small random time-independent
periodic and smooth (Gaussian) potential V'

oU(t,x) = AU(tx) + 2 *V(x)U(t,x), t>0,xeT¢

where & > 0 is a small parameter, « < 2 and T, = T/¢,
T =R/(27Z) ~ [0,27).

> Introduce macroscopic variables u,(t, x) = U(t/ e, x/ ¢) with parabolic
rescaling, then

Ortte (£, x) = Aug(t, x) + Ve(x)ue(t, x), t>0,xeT?

with
Ve(x) = e *V(x/e), x e T

Problem: Study the limit e — O for u,.
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The random potential
The covariance of the macroscopic noise is
E[Ve(x)Ve(y)] = *Ce((x—y)/e), xyeT?
where C; : ng — R is a smooth, positive—definite function on ’JI"f . Assume

ng Ce(x)dx = 1.

Take smooth test functions ¢, € #(T%) and let Ve(¢) = [u ¢(x) Ve(x)dx
then
BV@)Vel)) = [ p)p()Cel(x—y)/e)andy

~ g2 ./Td p(x)p(x)dx  ase— 0.

Lemma

Ifd > 2 then Ve — 0 in law. If d = 2« then V converges in law to the space
white noise & on T.

White noise on T¢
A family {Z(¢)} e 5 (1¢) Of r.v. such that Z(¢) ~ A7(0, ”(PH%Z(W))'
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Fourier representation

On the covariance C; we assume the form

Culv—) = (VIR T R e [,

i(xk
i st RO
ce

where Z4 = Z%\{0} and R € 7 (R?).

There exists a family of centered complex Gaussian random variables
{8(K)} ez such that g(k)* = g(—k) and E[g(k)g(K')] = It+x— and
ed/2—a 0
Ve(x) = k) /R (ek)g (k

€ (V2r d/2 keZZd )8 (k)
Taking a = d/2 we have (as distributions)

éj(x):(27'( —-d/2 /R Z ezxk

kez4

Exercise: Show that there exists a version of ¢ taking values in .%”.
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Sobolev regularity

Consider Sobolev spaces H” over T% with norm

1oy = X L+ 1K) | Fpaf ()

kezZd
2 el 2 20-2
E||Vellg- = ———— 1+ |k|)"“PR(ek) ~ eF~** =0
[Vellg-» (Vo) keZZ:d( [K[)~R(ek)
if p > « and d > 2a. It stays bounded if d = 2« and p > . Similarly for

E[|Xe 22

The white noise ¢ belongs to H*(T9) for all p < d/2.

It is possible to show that it is not better: a.s. ||¢||g-» = oo for p > d/2.
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Guesswork

As ¢ — 0 we guess that u; — 1 where

,,fu_{o ifd > 2a

u¢ ifd =2a

with £ = 9d; — A the heat operator. This would hold provided the solution
map
Y:n—=o

which sends potentials 7 to solutions of the parabolic Anderson model (PAM)
ZLv=uvy

is continuous in an appropriate topology in which (Vg) £ converges.
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Littlewood-Paley decomposition
¢ : R? — C with polynomial growth defines a Fourier multiplier

¢(D): S =7, ¢(D)f = F (¢pFf).
> Dyadic partition of unity: x,p € C*(R R ) such that
1. suppp € Z = {|x| < ¢} and suppp C & = {a < |x| < b}
2. x+Yizop27:) =1
3. supp(x) N .supp(p(Z*ﬂ )=0forj>1and

)
supp(p(27-)) Nsupp(p(27/+)) = 0 for all i,j > 0 with |i —j| >
Write p_1 = x and p; = p(271.) forj >

> Littlewood-Paley blocks:
Af = pi(D)f = F 7\ Ff) = Kisf = 7 (0,7f), > -1,
where K; = (2r)~%/2.7 ~1p; = 214K (2!.) with K € L'(R?)

Littlewood—Paley decomposition

f= Z AJ = hm S}f forall f € 7.

=-1
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Holder-Besov spaces
For « € R, the Holder-Besov space €* is given by ¢* = B&,W(Td, R), where

By ={f e : Ifllay, = ('21(2]'“|Ajf||b,)q)1/q L
]>

By, is a Banach space and while the norm ||- Hng depends on (x,p), the
space B;, ; does not and any other dyadic partition of unity corresponds to
an equivalent norm. Notation: ||-[|x = ||||px, _.

1AF e S 27 If Nl

By Parseval B} , = H".

Example

Aido(x) = (K;* 8o) (x) = K;(x) = 2K(2'x) = || 86| oo pay = 2

SO
by € T
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Tools

Bernstein inequalities

Let Zbe aballand k € Ng. Forany A > 1,1 <p < g < oo, and f € LF with
supp(Zf) C A% we have

ktd
max [|0¥f|lrs Sk A ( >Hf||U’
HENT:|p|=k

Besov embedding

Letl1<p; <pp<ooand1<g; <gp < oo and let « € R. Then B}

a~d(1/p1=1/p2)
P2.92

P, m
continuously embedded into B
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An 2 computation

8d/Z—oc .
AiVe(x) = ———— k) o. (k) +/R(ek)g (k
) = g I, 0 R0
S0 .
EIAVe@P] = e(y2mfe ™ Dy pi(kPECHRE)
S 22 supy oy R(K),

where &/ is the annulus in which p is supported. Now if &2t < 1 we have
E[|A;Ve(x)[?] < 21ed—20 — ¢=222if The assumption d — 2a > 0 then implies
E[|A;Ve(x) 2] < 22040k for any 0 < k < d — 2a. In the case €2/ > 1 we use
that fB(Orl)f R(k)dk < 400 to estimate

e Y R(ek) < / R(k)dk < +oo,
kez? Re

and then E[|A;Ve(x)|?] < e 2% < 224 (e2/)* for any small x > 0.

Assume d —2x > 0. Forany 0 < x <d — 2«

E[|A;iVe(x) ] < 2(2a-+K)igk
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From L2 to almost sure behavior

> Note that A;V(x) is a Gaussian r.v. so for any p
E(Velly ;] = 27 [ dxE[AVe() ) = G D27 [ (E[|83Ve(x) 1)
2 i i
< szippzp(szrK/Z)ispx/Z < &Px/2
i

forallp > a +x/2.

> By Besov embedding [|Ve|[p-o < | Vell 5ot 5O
0,00 PP

E(|Vel!, | SElIVell ] S e/

By
forall p > a +x/2 4+ d/p. Note that x and p are arbitrary.

Theorem

Ifd > 20 then Ve — 0in € ~%. While if d = 2« then V converges to the space
white noise on T% in €~
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Regularity of the solution map

We are let to the study of the properties of the equation
ZLv =1nov

with 7 € 7%~ . This stability is easy to establish when a« < 1 by standard
estimates in Besov spaces. We need two ingredients: (y =2 —a—)

1. Schauder estimates in Besov spaces for the parabolic equation .Zf = g
in the form |[fly < liglly-2

2. Continuity of the product map (77,v) — vy in the form
l[onlly—2 < lolly l7lly—2

vECT — v eETE —T(v) =L () €67
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Schauder estimates

Let Jf such that ZJf = f and Jf(0) = 0 then

JF(t) = /teA(t_s)fsds.

0

Consider CX = C([0, T]; X) and norms ||f{|crx = supp<ss<r WFO=FE 1t

‘t—S‘”
L7 = Cr¢? N CY2L> with the norm || - | r = max{]| - ;v || - legrage} -

If o € (0,2) then
1fllze S 1+ Dfllc,ge2

[t = Prull 2z S llullo-
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Product and paraproduct estimates

Deconstruction of a product: f € °, g € €7

fs=Y AfAg=f=<g+fog+f>g

ij>—1

f=g=g-f= Y. Mfdg  fog= )}, Afig

i<j—1 li—jl<1

Paraproduct (Bony, Meyer et al.)

f<ge min(y+p,7)

foge €Tt only if y +p0 >0
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Proof. Recall f € ¢, g € €7.

i <j=suppF (AfAQ) C2/ i~ j= suppF(AfAig) C VA
Soifp >0

A(F=<8) =Y. Y N(AfAG) =0Q271) = f<g€%7,
Jirq <=1 N~ ——"
O(2-—7)
while if p < 0

MF=<8) =Y Y AfAfAR) =02 1)) = f g e @t
Jirvq <=1 N~
O(2-=i7)
Finally for the resonant term we have
Ai(fog) = Y Ag(AfAR) =Y 0Tty = fog e g1t
i~j2q i2q

but only if the sum converges.

(15 / 63)



Continuity of PAM for v > 1

Assume that y > 1. Let
C(0) () = Pro(0) + J(on)(8
and assume that v(0) € 47. By the product estimate
(0,7) € LY <" 2 s vpe L172?
if 2y — 2 > 0. In this case by Schauder estimates [(uy) € .£7 so

veLY — e L2 T(v) =2 Y oy) e L2774

The map ¥ : 77 — v is continuous form €72 — 7
If v < 1 the above argument breaks down since
(0,7) ECT X C7 % Loy’

(it is not continuous).
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Enhanching PAM

Let X the solution to
ZLX=n, X(0,)=0

and let v = eXw. Then
20 =X Lw + XwLX — Xw|0,X|? — eX(9:X, dyw) = vy

SO
ZLw = |0, X|* + (09X, dyw)

Take = V¢ and £X, = V, then
t
0xXe(t,x) = /0 - oxp(t —s,x —y) Ve(y)dyds

ed/2—n b e ilx
= e Zd/o ike™IKI*(t=5) g i) | /R (k) g (k).
keZj
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Absence of continuity

E[peXe(t, 1)) = 5 Y /tike*|k|2<f*5>dszzz(ek)

X4xe\ by -

_ e W g / R(k)
Jre k|2

- (vam)! keezd [kl

If d > 2 and « = 1 we have V¢, Xe — 0 but E[|9xXe(t,x)[2] = 02 > 0!
If d = 2 and « = 1 it even happens that E[|0: X, (t,x)|?] ~ | loge| — +oo.

Note that 9, X, € C#7~! (uniformly in ¢) and by product estimates
X, > |9xXe|? is continuous only if ¢ > 1.

This example show optimality of the condition for the continuity of the
product.
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Fluctuations of |9, X.|?

Compute

Aq(|axXS‘2)(t/x) =

£d72tx .
[Coe Y etk o (kg + k) Ge(t ek1)Ge (t, ko) g (K )g (ko).
kl,kzezg
where /e
k[l —entRE]
By Wick’s theorem

Cov(g(k1)g(kz), g(k1)g(kz)) = Elg(k1)g (k) |E[g(k2)g (k)]
+Elg(ky)g(k3)|E[g(k2)g (k7))
= Iy 1k =ty 1, =0 + Ty, =k K, =05

which implies

82‘174“
Varldy (B XeP)(00] = = L (ealka +k) PGk Glek)
ki ko €Z8
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On one side we have

Varla (9XeP) (6 2)) S 4% (py((ha +h)/e) RO IR

212
k1,kz€szg |k1| |k2|
2
< 2d+4—4a [R(k1)|[R(k2)| ~ 4-aa /dk\R(kﬂ
~e L TPlP kP

ky ,szSZg

On the other side in order to satisfy k; + k; ~ €29 we must have
ky <ky ~ €27 or €27 < k1 ~ ky. In the first case

S I |R(k1)[IR(ka)| < pa-D @it [R(k2)|
g Iy |? ko |2 g 2 ko
k1 ko €€ ko €eZ
5 (qu)d72g4f4zx“R”w/dkllTk(‘kz)' 5 (gzq)d72g4f4zx“RHoo0_2

since [R(k1)|/[k1* < [Rlleo/ (€27)2.
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If €29 S kg ~ kp we similarly have

_ R(ky)||R (ks
Qitide ¥ Hwﬁwkzl (k)| [R(K2)|

211 |2
ki k, €78 e |2 ke

_ _ R 04
52q(d 2)€2d+2 404HR||00 Z ]182‘7<k2‘ ( 2)‘ 5 (Ezq)d 254 4“HR||00(72
k d ~ |k2\
26820

so we can conclude that

Var[Aq(\axXSF)(t,x)] < et min(o*, (qu)d*ZHRHOOUZ).
Let ce(t) = E[|0xXe|2(t,x)] and [0xXe[*? = |0xXe|? — c¢
By hypercontractivity of Gaussian measures

E[|[0xXel (£, ) "] Sp (E[l[2xXe[ (£, 2) P)P/? S (*~* min(1, (e27)2))P/?

Let « = 1 then when d > 2, |9:X|°? — 0 and [9xXe|?> — c¢ in C[(;,T]‘@”O*.
and when d = 2, |9, X¢|°? — [9xX|°? in Cr%€°~.
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Continuity of the transformed problem

Consider
Lw = 0+ (9:X, 0xw)

with X € C%7 and 6 € C£?7~2. This equation can be solved for w € C£%"
(0:X,0,w) € CET 1 x CE2 1 i (3,X,9,w) € CE372
is continuous if 3y — 2 > 0. In this case we have

0 4 (9:X, 9xw) € CE21772 = (6 + (09X, d,w)) € CE>T

If 3y — 2 > 0 there exists a continuous map

¥:(X,0) € CEY x CEY 2= we CEY

(22/763)



Lack of continuity, revisited

Setting we = ¥ (JVe, |0x]Ve|?) and ue = e/Vew, we have that

Lue = u:Ve

Leta =1and d > 2. When e — 0 ]V, — 0in C%€7 and |9,JV,|? in C&272
which implies
we — w = ¥(0,0°), Ue S U=w

respectively in C¢27 and C%.

Now
Lue = u:Ve

but
Lu=0c>#0.

Showing that the limit is not what we expected! Even worse when d = 2

since now
[0x]Ve|* = +o00 + 9]¢
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A first renormalization

Introduce the renormalized variable
fe(t) = e o ce()dsyy, (1)

solving
Lite = Vel — Celle

Then
L. = (|0xXe|? — C¢) + (02X, Oxle)

So now @, = ¥(X, |8XX€|2 — ¢¢) and when ¢ — 0 we have
e — @ = ¥ (X, ]9:X|°?)

In this case the limit is still random. What is the equation satisfied by
~ _ Xzo
il = e ?

Formally
Lii = "l — ooil”.

Both terms in the r.h.s. are not well defined but their sum is.
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Paracontrolled analysis

In order to give a meaning to the PDE for v when ¢ < 1 we need to
understand the properties of the product v¢.

Note that X¢ can be given a well defined meaning by the formula
XE = XZX = X+ |0:X|?

so that
XeVe — e = LX2 + [0, X, [*?

and then by taking limits we have
"X(: oo’ — ng + ‘axx|<>2

We would like to say that v = eXw is somewhat as irregular as X (since w is

twice as regular) and use this to control v¢ as we were able to control X¢.

A possible rigorous formulation of this "as irregular as" is given by
paracontrolled distributions. We want to show that there exists a function v
such that

X

v—0vX <X € CE
and that this will help us in the analysis of v¢.
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Paralinearization

Lemma
Let « € (0,1), B € (0,a], and let F € C;H&/a. There exists a locally bounded map
Rp : €% — €“TP such that

F(f) =F'(f) =<f + Re(f) @)

for all f € €. More precisely, we have
1+B/
IRE () lacep < 1l uonre (14 1l P7%).
IfF € Ciﬂz /'X, then R is locally Lipschitz continuous:

IRE(F) = Re(@)llasp S IFllcarorm (14 I1flla + llglla) P41 — 8lla-
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Proof of paralinearization

The difference F(f) — F'(f) <f is given by
Re(f) =F(f) = F(f)=f = Y [AF(F) = SiaF (HAfl = ),

il el

and every u; is spectrally supported in a ball 2/4. For i < 1, we simply
estimate ||u;]|po < ||F||C;(1 + |[f|la). Fori>1

ui(x) = /Ki(x — YK (x = 2)[F(f(y)) — F (f(2))f (v)|dydz
= / Ki(x —y)K<im1(x = 2)[F(f(y)) — F(f(2)) — F'(f(2)) (f(y) — f(2))]dydz,

where K; = zgflp,-, Keiq1= Zj<,-_1 K;, and where we used that
JKi(y)dy = p;(0) =0fori>0and [K.;_1(z)dz=1fori> 1.
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Proof of paralinearization (continued)

Now we can apply a first order Taylor expansion to F and use the
B/a-Holder continuity of F’ in combination with the a—Holder continuity of
f, to deduce

1 Y
1] S IFlgerre 1717 [ 1KiCox = )R i1 (6 = )] x 2 = gl Pelye

1+B/aq—i
S IFllyee P/ *278),

The estimate for Rp(f) follows.

The estimate for Rr(f) — Rr(g) is shown in the same way.
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Commutator lemma

Lemma

Assume that o, B,y € R are such that « + 4+ v > 0 and B + v # 0. Then for
f,8 h € C* the trilinear operator

C(f,gh) = ((f <) oh) —f(goh)

allows for the bound

ICU, & mllp+ S IFllallgllg Il ®)

and can thus be uniquely extended to a bounded trilinear operator from
E*xCPx 6" to P
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Proof of the commutator lemma

Assume $ + 7 < 0. By definition

C(f,8h) = Y., Mi(AfM AT k1L g<1 — Tg—gi<a)
T

= ) A M) Ach(Tick1Li—g<a l—oj<n — L—g<1)s
ikl

where we used that S;_1fAxg has support in an annulus 2¥.¢7, so that
A;(Sk_1fArg) # 0 only if |i — k| < N — 1 for some fixed N € N, which in
combination with |i — ¢| < 1 yields [k — ¢| < N. Now for fixed k, the term
Yo ke <nDrgAeh is spectrally supported in an annulus 2ke7, so that
ko Ipgk—rj<nDrgAH € %P+7 and we may add and subtract

I Xko k- <nDrgAh to C(f, 8, h) while maintaining the bound (3).
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Proof of the commutator lemma (continued)

It remains to treat

Y A(AFM) AhT N (Tick—1T}i_g<1 — 1)

ijkl
== ) Ai(Af M)A g enTink—1 + Lick—1Li_g>1)- (4)
ikl
We estimate both terms on the right hand side separately. For m > —1 we
have
HAm< ) Ai(A/fAkg)AehH\k—Z\gN]Ij>k—1) HLM
ijk,tl
< L Ijsentiziot |8m(BF kg o S 30 - 27 Iflla2 P llgll g2~ [Rll
ek jZmksj

S ¥ 2@ HEf|lallgllg il S 27" HEEf|aligl gl

,Zm

using B+ < 0.
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Proof of the commutator lemma (end)

It remains to estimate the second term in (4). For |[i —¢| > 1 and i ~ k ~ ¢,
any term of the form A;()A() is spectrally supported in an annulus 2¢.¢7,
and therefore

HAm< Y Ai(A;'fAkg)Aéhﬂ|k7€|<NHj<k71H\i7€\>1>

ikt =
S Y Bcko1Timkmtom |8 (Af Ar) Agh|
il
S Y 272 lgll g2 Il S 27 BV | Lallg g 1l -
j<m
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Paracontrolled analysis of v = eXw

By paralinearization we have

X =X <X+ Ce?
Using the fact that

If < (g <h) = () <Pllarp S Ifllaligllall’llg,
we have also
Xw=w< (X <X+C) +eXow+tw=<eX = (Xw) <X +CEH

which means indeed that

v—vX <X € C¥¥

with vX = o.
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The Good, the Ugly, the Bad

The product v¢ can be decomposed as
vg = v<¢ + vol + v>-C
N~ ~—~— N
The Bad, € C€7"2 TheUgly The Good, € C€*'~2

The real problem is given by the resonant term v o ¢. Using
vt = v — X <X € CZ? we have

vol= (X <X)of+ vhog
~——
CE3r—2
By the commutator lemma:
v0f =X (Xof) +vhof +CE*2

So
vl = @(vx,vﬁ,é,Xoé) =< E+0vX(Xof) +Cg?r2

where the function © is continuous.
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Structure of solution and paracontrolled distributions

> So in the limit ¢ — 0 we have
i1eVe — ceille = flg < Vi + ile(Xe 0 Ve — ¢¢) + Clile, Xe, Vi) + ik o Ve + il = Ve
0= E+a(XoE) +CM, X, &) + i ol +ii - &
=108 = (i1, i, X, X o &)
where X o & := lim,_,o(Xe 0 Ve — c).
> Question: What is the equation satisfied by it = lim,_,( .?

Indeed
Lil =" —oofl” =i0¢ = <I>(ﬁ,ﬂﬁ,X,X<>§).

Where the rh.s. is well defined since i is paracontrolled by X.
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Paracontrolled distributions

Paracontrolled distributions
Wesay y € 7 if x € €7
y=y <x+y
with y* € 4° and y# € €7HP.
> Paralinearization. Let ¢ : R — R be a sufficiently smooth function and

x € €7,y >0. Then
p(x) = ¢'(x) <x+ €%

> Another commutator: f,g € 6°, x € €7

f=@=h) =) <h+e™

> Stability. (0 < 1)
o(y) = (¢'()y") < x+ €7
so we can take ¢(y)* = ¢’ (y)y~.
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Solution theory for general signals

Goal: Show that ¥ : 7 — u factorizes as
X (0]
1= X(n) =@ Jnen) —u

> Analytic step: show that when vy € (2/3,1):
P X €7

is continuous. X = ImX C €772 x 2772 is the space of enhanced signals (or
rough paths, or models).

But in general X is not a continuous map €72 — €772 x €212,

> Probabilistic step: prove that there exists a "reasonable definition" of X(¢)
when ¢ is a white noise. X(¢) is an explicit polynomial in ¢ so direct
computations are possible.

Tools: Besov embeddings [P ((); %) — LP(Q); Bgfp) ~ Bgfp(U’ (Q))), Gaussian

hypercontractivity LP (Q) — L2(Q), explicit L?> computations.
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Paracontrolled gPAM (I) - the r.h.s.

u:Ry xT?2 5 R, € %72, v =1—. We want to solve (have uniform
bounds for)

ZLu=Fu)l =Fu) <{+F(u)ol+F(u) = ¢.

> Paracontrolled ansatz. Take X = ¢, X € €7 and assume that u € @;(:
u=uX < X+u

with uf € €27 and uX € ¢7.

> Paralinearization:

F(u) = F(u) < u+¢* = (F(wuX) < X+ €%

> Commutator lemma:
F(u)og = ((F/(wu*) < X)of+€* o
= (F'()u*)(X 0 g) + C(F (w)u*, X,§) + 6> o ¢
€2 €€3r2
if we assume that (X o &) € €272,
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Paracontrolled gPAM (II) - the Lh.s.

So if u is paracontrolled by X:
u=uX <X + ul
and if X o & € €772 we have a control on the r.h.s. of the equation:
F(u) = F(u) <+ F (u)u*(X o) + €2
What about the Lh.s.?
Lu=Lu* X+ uX < E4+ 2uf — 9 <0, X
so letting uX = F(u) we have

Zut = — LF(u) < X+ F (u)F(u)(X 0 &) + €272
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Paracontrolled gPAM (III) - the paracontrolled fixed point.

The PDE
Zu=TF(u)l
is equivalent to the system
X =C¢
duf =(F' (u)F(u))(X 08) — Zf(u) < X+R(f,u,X,5) o
"erg-2 eI2

u=F(u) < X +u

> The system can be solved by fixed point (for small time) in the space 7y, if

we assume that
Xe¥?, (Xof&) eg?r 2
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Structure of the paracontrolled solution

> When ¢ smooth, the solution to
o = F(u)g, u(0) = ug
is given by u = ®(ug, &, X o &) where
ORI X2 @7
is continuous for any y > 2/3 and z = ®(uy, &, ¢) is given by
z=F(z) < X+7
a2z} =(F'(2)F(z)) 9 — LF(z) < X+R(F,z,X,&) o

nerg2y=2 cE3r-2

> If (&7, X" o &) — (&17) in €72 x €772 and
ot = f(u")g",  u(0) =ug

then u" — u = ®(uy, &, 17).
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Relaxed form of the PDE

> Note that in general we can have ¢ — & &" — & and
lim XU o gl lim X2 o g2
> Take ¢", & smooth but & — & in €772, It can happen that
limX"0g" =XoZ+¢€ Gl
In this case u” — u and u = ®(§, X o { + ¢) solves the equation
Lu = F(u)& + F (u)F(u)e.

The limit procedure generates correction terms to the equation.

The original equation relaxes to another form in which additional terms are
generated.
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"Ito" form of the PDE

In the smooth setting u = ®(&, X o { + ¢) solves

Lu=Fu)&+F (u)F(u)e.

If we choose ¢ = —X o ¢ then
v=2(Xoi+¢)=2(¢,0)

solves

ZLv=F()¢—F(v)F(v)Xo¢

and has the particular property of being a continuous map of & € €72
alone.
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The renormalization problem

If ¢ is the space white noise we have

fee -, Xec(oT;¢")

and . .
Xof=XoLX= Eﬁ(XoX)—l— E(DXODX)
= %ﬁ(XoX) — (DX < DX) + %(DX)Z
But now 1
E(Dx)2 — ¢+ Ce"
with ¢ = +ool.

No obvious definition of X o ¢ can be given. But there exists ¢, such that

Xeole—ce — "Xo&”  in CEY.
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The renormalized gPAM

To cure the problem we add a suitable counterterm to the equation

Lu=f(u) o = fu)g —c(f (w)f ()
this defines a new product, denoted by . Now
fw)od—c(f' (w)f () = (f' ()f (W) (Xo& =) + C(f' (u)f (u), X, ) + R(f,u, X) o &
> The renormalized gPAM is equivalent to the equation
Lu' = —Lf(u) < X+ Df (u) < DX + (' (u)f (u)) (X 0 & = ¢)

+C(f (w)f (1), X, &) + R(f,u,X) 0 &
together with u = f(u) < X + ut and where

Xe¥'", Xof=(Xof—-c)e¥, ulez?.
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Finally a theorem

Theorem

Letd=2,a =1,y =1—and small T > 0. There exist constants c¢ such that
letting ue the solution to

Lue = VeF(ue) — ceF' (ue)

then ue — uin €Y ase — 0and u € _@)2(7 is the unique weak solution in .@)2(7 to
the equation

Zu=EoF(u) = F(u) < &+ F (u) (X&) + G(uX,ut, X)

where
¢=1lmV,, Xof=1limX; 0V, —c¢
e—0 e—0

in €72 and €*Y=2 resp. and & has the law of the white noise on T2.
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The KPZ equation
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Fluctuations of a growing interface

noise
diffusion
£(t,x)
drift

F(Vh(t,z))

Ah(t,z)

h(t,x)

A model for random interface growth (think e.g. expansion of colony of
bacteria): h: R4 xR — R,

oth(t,x) = kAh(t,x)+  F(d.h(t,x)) + n(t, x)
—— —— N——
relaxation  slope-dependent growth  noise with microscopic correlations
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Fluctuations of a growing interface

-150 -
150 -100
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The Kardar-Parisi-Zhang equation

» Kardar-Parisi-Zhang '84: slope-dependent growth given by F(dyh), in a
certain scaling regime of small gradients:

F(3xh) = F(0) + F'(0)ayh + F" (0) (9ch)? + ...

» KPZ equation is the universal model for random interface growth

oth(t,x) = &h(t,x) + A(xh(t, x))? — oo] + E(t, xl
~— Y— ~—
relaxation renormalized growth space-time white noise

> This derivation is highly problematic since 9,/ is a distribution. But:
Hairer, Quastel (2014, unpublished) justify it rigorously via scaling of
smooth models and small gradients.

» KPZ equation is suspected to be universal scaling limit for random
interface growth models, random polymers, and many particle systems;

» contrary to Brownian setting: KPZ has fluctuations of order #1/3, large
time limit distribution of t~1/3h(t, 2/3x) is expected to be universal in a
sense comparable only to the Gaussian distribution.
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KPZ and its siblings:

» KPZ equation:
ZLh(t,x) = " (3:h(t,x))? — 00" + E(t,x);

h: Ry xR = R, .Z = 0; — A heat operator, ¢ space-time white noise;

» Burgers equation:
Zu(t,x) = ”ax(u(t,x)z)” + 0x&(t, x);

solution is (formally) given by derivative of the KPZ equation: u = d.h;

» solution to KPZ (formally) given by Cole-Hopf transform of the
stochastic heat equation: 1 = log w, where w solves

ZLw(t,x) ="w(t,x)o&(tx)".

» All three are universal objects, that are expected to be scaling limits of a
wide range of particle systems.
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Stochastic Burgers equation

Take u = Dh

Lu = D¢ + Du?
to obtain the stochastic Burgers equation (SBE) with additive noise.

> Invariant measure: Formally the SBE leaves invariant the space white
noise: if #y has a Gaussian distribution with covariance

Efug(x)up(y)] = 6(x — y) then for all + > 0 the random function u(t, -) has a
Gaussian law with the same covariance.

o> First order approximation: Let X(t, x) be the solution of the linear
equation
X (t,x) = 32X (t,x) + 9 E(t,x), x€T,t>0

X is a stationary Gaussian process with covariance
E[X(t,x)X(s,y)] = pjr—s)(x — ).
Almost surely X(t,-) € €7 for any v < —1/2 and any t € R. For any t € R

X(t,-) has the law of the white noise over T.
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Expansion for the SBE
Recall the SBE:
Lu=Di*+¢

> Let u = X + uj then
Luy = 3y (ug + X)? = 3 X 420y (11 X) + 913
N
2
> Let XY be the solution to
XV =9X* = xVee¢"
and decompose further u; = XY + uy. Then
Ly = 20 (XVX) 420 (2X) + 9 (XVXY) 420, (4 XY) + 95 (11)?

—3/2— —il—

i> Define X% = 20,(XVX) and up = XY + u3 then XV € ¢1/2~

Luz = 20y (u3X) + 205(XVX) + 0x(XVXY) 4202 (15X ") + 9 (112)2
N — N—— ~—

—
—3/2— —3/2— —1-
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Expansion /II

> The partial expansion for the solution reads
u=X+Xx"+2xV4+U
LU = 20, (UX) + 20 (XX) + 9 (XYXY) +20,((2X Y + U)XY) + 0, (2X ¥ + U)2

= 20, (UX) +.2(2X% + X¥) + 20, ((2X¥ + )XY) + 8, (2X" + U)2

and the regularities for the driving terms

X xv ] xv | x¥ [ x¥
—1/2— [ 0= | 1/2= [ 1/2= | 1=

We can assume U € €12~ so that the terms
20, ((2X% + ) XY) + 9, (2X¥ + U)?
are well defined.

The remaining problem is to deal with 20, (UX).
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Paracontrolled ansatz for SBE

> Make the following ansatz U = U’ < Q + U*. Then
LU=2U <Q+U <.£Q -9, U <dQ+LU*
while

LU =20, (UX) + £2X% + XV) + 20, (XY + U)XY) + 9,(2X" + U)?

R(U)

=20, (U < X) 420, (U 0 X) 4+ 29, (U = X) + R(U)
=2(U < 9xX) +2(0xU < X) 4+ 20, (U o X) +20,(U > X) + R(U)
so we can set U’ = 2U and £Q = 9,X and get the equation

LU = —2U < Q+ 0, U < 9,Q +2(3;U < X) + 20, (U 0 X) + 20, (U >
X) 4+ R(U)

> Observe that Q, U, U’ € €12~ and we can assume that U? € €1~.
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Commutator

> The difficulty is now concentrated in the resonant term U o X which is not
well defined.

> The paracontrolled ansatz and the commutation lemma give

UoX=(2U < Q)oX+ U o X =2U(QoX)+C(2U,Q,X)+ U 0 X
—_—
1/2— 1/2—

> A stochastic estimate shows that Qo X € %~
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Paracontrolled solution to SBE

> The final system reads
u=X+xV+2x¥+u
U=u <Q+Ut, U =2x"+2u
LU = 49, (U(Q o X)) 4 40,C(U, Q, X) 4+ 20, (Uf 0 X) —2.2U < Q

+20,U < 0xQ + 2(9,U < X) 420, (U > X) + R(U)

> This equation has a (local in time) solution U = ®(X(¢)) which is a
continuous function of the data X(&) given by a collection of multilinear
functions of ¢:

X&) = (X, XV, X%, X% x¥, X0 Q)
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Burgers equation and paracontrolled distributions

Lu(t,x) = oxu?(t,x) + 0:Z(t,x),  u(0) = ug.

Paracontrolled Ansatz
UE Py if u =X+ XY +2XY +u° with
ul = < Q—i—uﬁ.
» Paracontrolled structure: Can define #? continuously as long as

(QoX) € C([0,T],%°) is given (together with tree data
X, XY, x¥, x% x¥).

» Obtain local existence and uniqueness of paracontrolled solutions.

Solution depends pathwise continuously on extended data
X(&) = (&, X, XV, X%, X% XY,QoX).
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KPZ equation

KPZ equation:
ZLh(t,x) = (3:h(t,x))2 +E(tx),  h(0) = hy.

Expect h(t) € €127, s0 0:h(t) € €1/~ and (9,h(t))? not defined. But:
expand

u=Y+Y +2vV 1P,
where 2Y =&, 2YY = 0,Y0,Y,...In general: 0,Y" = X". Make
paracontrolled ansatz for h':

WP = (i, P) + ht

with i’ € C([0,T],¢V/%7), h* € C([0,T], 62"), £LP = X. Write h € Py,

Can define (yh(t))? for h € Prp and obtain local existence and uniqueness
of solutions.
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KPZ and Burgers equation

he ykpz if
h=Y+YV+2YY+nP, W =4 <P+t
U E Prpe if

u=X+x¥Viox¥ul uQ =1 < Q+ul.

» Ifhe z@kpz, then dxh € P pe.

> If 1 solves KPZ equation, then u = d.h solves Burgers equation with
initial condition u(0) = dxhy.

> If u € Py, then any solution 1 of Lh = u? + & is in Prpz-

» If u solves Burgers equation with initial condition u(0) = dyhp, and h
solves .Zh = u? + ¢ with initial condition /(0) = hy, then h solves KPZ
equation.
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KPZ and heat equation

Heat equation:
Zw(t,x) =w(t,x)ol(t,x) =w(tx)E(tx) —w(tx) o0, w(0)=wp.
Paracontrolled ansatz: w € Py, if

v 84 \
w=e VP WP = 1 (w!,P) + wh

(comes from Cole-Hopf transform).
» Slightly cheat to make sense of product w ¢ ¢ for w € Ppy:
wo & = Luw— Vi [;’pr LY YY) + (Y + Y + zy"))z]wl’]
+ 2eY+Y"+2yY’ax(y +YY +2Y¥)a0”;
(agrees with renormalized pointwise product w ¢ ¢ in smooth case and
with It6 integral in white noise case, continuous in extended data).
» Obtain global existence and uniqueness of solutions.

> One-to-one correspondence between Z,, and strictly positive
elements of Ze.

» Any solution of KPZ gives solution of heat equation. Any strictly
positive solution of heat equation gives solution of KPZ equation.
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Thanks
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