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Homogenisation of a random potential

. Consider the linear heat equation with a small random time-independent
periodic and smooth (Gaussian) potential V

∂tU(t, x) = ∆U(t, x) + ε2−αV(x)U(t, x), t ≥ 0, x ∈ Td
ε

where ε > 0 is a small parameter, α < 2 and Tε = T/ε,
T = R/(2πZ) ∼ [0, 2π).

. Introduce macroscopic variables uε(t, x) = U(t/ε2, x/ε) with parabolic
rescaling, then

∂tuε(t, x) = ∆uε(t, x) + Vε(x)uε(t, x), t ≥ 0, x ∈ Td

with
Vε(x) = ε−αV(x/ε), x ∈ Td.

Problem: Study the limit ε→ 0 for uε.
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The random potential
The covariance of the macroscopic noise is

E[Vε(x)Vε(y)] = ε−2αCε((x− y)/ε), x, y ∈ Td

where Cε : Td
ε → R is a smooth, positive–definite function on Td

ε . Assume∫
Td

ε
Cε(x)dx = 1.

Take smooth test functions ϕ, ψ ∈ S (Td) and let Vε(ϕ) =
∫
Td ϕ(x)Vε(x)dx

then
E[Vε(ϕ)Vε(ψ)] = ε−2α

∫
Td×Td

ϕ(x)ψ(y)Cε((x− y)/ε)dxdy

∼ εd−2α
∫
Td

ϕ(x)ψ(x)dx as ε→ 0.

Lemma
If d > 2α then Vε → 0 in law. If d = 2α then Vε converges in law to the space
white noise ξ on Td.

White noise on Td

A family {ξ(ϕ)}ϕ∈S (Td) of r.v. such that ξ(ϕ) ∼ N (0, ‖ϕ‖2
L2(Td)

).
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Fourier representation

On the covariance Cε we assume the form

Cε(x− y) = (ε/
√

2π)d ∑
k∈εZd

ei〈x−y,k〉R(k)→ε→0

∫
Rd

dk
(2π)d/2 ei〈x,k〉R(k)

where Zd
0 = Zd\{0} and R ∈ S (Rd).

There exists a family of centered complex Gaussian random variables
{g(k)}k∈Zd such that g(k)∗ = g(−k) and E[g(k)g(k′)] = Ik+k′=0 and

Vε(x) =
εd/2−α

(
√

2π)d/2 ∑
k∈Zd

ei〈x,k〉
√

R(εk)g(k)

Taking α = d/2 we have (as distributions)

ξ(x) = (2π)−d/2
√

R(0) ∑
k∈Zd

ei〈x,k〉g(k).

Exercise: Show that there exists a version of ξ taking values in S ′.
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Sobolev regularity

Consider Sobolev spaces Hσ over Td with norm

‖f‖2
Hσ(Td) = ∑

k∈Zd

(1 + |k|)−2ρ|FTd f (k)|2.

E‖Vε‖2
H−ρ =

εd−2α

(
√

2π)d ∑
k∈Zd

(1 + |k|)−2ρR(εk) ∼ ε2ρ−2α → 0

if ρ > α and d > 2α. It stays bounded if d = 2α and ρ > α. Similarly for
E‖Xε‖2

H2−ρ .

The white noise ξ belongs to H−ρ(Td) for all ρ < d/2.

It is possible to show that it is not better: a.s. ‖ξ‖H−ρ = +∞ for ρ ≥ d/2.
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Guesswork

As ε→ 0 we guess that uε → u where

L u =

{
0 if d > 2α

uξ if d = 2α

with L = ∂t − ∆ the heat operator. This would hold provided the solution
map

Ψ : η 7→ v

which sends potentials η to solutions of the parabolic Anderson model (PAM)

L v = vη

is continuous in an appropriate topology in which (Vε)ε converges.
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Littlewood–Paley decomposition
ϕ : Rd → C with polynomial growth defines a Fourier multiplier

ϕ(D) : S ′ → S ′, ϕ(D)f = F−1(ϕF f ).

. Dyadic partition of unity: χ, ρ ∈ C∞(Rd,R+) such that

1. suppρ ⊆ B = {|x| 6 c} and suppρ ⊆ A = {a 6 |x| 6 b}
2. χ + ∑j>0 ρ(2−j·) ≡ 1

3. supp(χ) ∩ supp(ρ(2−j·)) ≡ 0 for j > 1 and
supp(ρ(2−i·)) ∩ supp(ρ(2−j·)) ≡ 0 for all i, j > 0 with |i− j| > 1.

Write ρ−1 = χ and ρj = ρ(2−j·) for j > 0.

. Littlewood–Paley blocks:

∆jf = ρj(D)f = F−1(ρjF f ) = Ki ∗ f = F−1
(

ρjF f
)

, j > −1.

where Ki = (2π)−d/2F−1ρi = 2idK(2i·) with K ∈ L1(Rd)

Littlewood–Paley decomposition

f = ∑
j>−1

∆jf = lim
j→∞

Sjf for all f ∈ S ′.
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Hölder-Besov spaces
For α ∈ R, the Hölder-Besov space C α is given by C α = Bα

∞,∞(Td,R), where

Bα
p,q =

{
f ∈ S ′ : ‖f‖Bα

p,q
=
(

∑
j>−1

(2jα‖∆jf‖Lp )q
)1/q

< ∞
}

.

Bα
p,q is a Banach space and while the norm ‖·‖Bα

p,q
depends on (χ, ρ), the

space Bα
p,q does not and any other dyadic partition of unity corresponds to

an equivalent norm. Notation: ‖·‖α = ‖·‖Bα
∞,∞

.

‖∆if‖L∞ . 2−iα‖f‖α

By Parseval Bα
2,2 = Hα.

Example

∆iδ0(x) = (Ki ∗ δ0)(x) = Ki(x) = 2idK(2ix)⇒ ‖∆iδ0‖L∞(Td) ' 2id

so
δ0 ∈ C−d.
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Tools

Bernstein inequalities

Let B be a ball and k ∈ N0. For any λ > 1, 1 6 p 6 q 6 ∞, and f ∈ Lp with
supp(F f ) ⊆ λB we have

max
µ∈Nd :|µ|=k

‖∂µf‖Lq .k,B λ
k+d

(
1
p− 1

q

)
‖f‖Lp .

Besov embedding

Let 1 6 p1 6 p2 6 ∞ and 1 6 q1 6 q2 6 ∞, and let α ∈ R. Then Bα
p1,q1

is

continuously embedded into Bα−d(1/p1−1/p2)
p2,q2 .
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An L2 computation

∆iVε(x) =
εd/2−α

(
√

2π)d/2 ∑
k∈Zd

ei〈x,k〉ρi(k)
√

R(εk)g(k)

so
E[|∆iVε(x)|2] = εd(

√
2π)dε−2α ∑k∈Zd ρi(k)2ei〈x,k〉R(εk)

. εd−2α2id supk∈ε2iA R(k),
(1)

where A is the annulus in which ρ is supported. Now if ε2i 6 1 we have
E[|∆iVε(x)|2] . 2idεd−2α = εβ−2α2iβ. The assumption d− 2α > 0 then implies
E[|∆iVε(x)|2] . 2(2α+κ)iεκ for any 0 6 κ 6 d− 2α. In the case ε2i > 1 we use
that

∫
B(0,1)c R(k)dk < +∞ to estimate

εd ∑
k∈Zd

R(εk) .
∫
Rd

R(k)dk < +∞,

and then E[|∆iVε(x)|2] . ε−2α . 22αi(ε2i)κ for any small κ > 0.

Assume d− 2α > 0. For any 0 6 κ 6 d− 2α

E[|∆iVε(x)|2] . 2(2α+κ)iεκ .
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From L2 to almost sure behavior

. Note that ∆iVε(x) is a Gaussian r.v. so for any p

E[‖Vε‖p
B−ρ

p,p
] = ∑

i
2−ipρ

∫
Td

dxE[|∆iVε(x)|p] = Cp ∑
i

2−ipρ
∫
Td

dx(E[|∆iVε(x)|2])p/2

.∑
i

2−ipρ2p(α+κ/2)iεpκ/2 . εpκ/2

for all ρ > α + κ/2.

. By Besov embedding ‖Vε‖B−ρ
∞,∞
. ‖Vε‖B−ρ+d/p

p,p
so

E[‖Vε‖p
B−ρ

∞,∞
] . E[‖Vε‖p

B−ρ
p,p
] . εpκ/2

for all ρ > α + κ/2 + d/p. Note that κ and p are arbitrary.

Theorem

If d > 2α then Vε → 0 in C−α−. While if d = 2α then Vε converges to the space
white noise on Td in C−α−.
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Regularity of the solution map

We are let to the study of the properties of the equation

L v = ηv

with η ∈ C−α−. This stability is easy to establish when α < 1 by standard
estimates in Besov spaces. We need two ingredients: (γ = 2− α−)

1. Schauder estimates in Besov spaces for the parabolic equation L f = g
in the form ‖f‖γ . ‖g‖γ−2

2. Continuity of the product map (η, v) 7→ vη in the form
‖vη‖γ−2 . ‖v‖γ‖η‖γ−2

v ∈ C γ −→ vη ∈ C γ−2 −→ Γ(v) = L −1(vη) ∈ C γ
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Schauder estimates

Let Jf such that L Jf = f and Jf (0) = 0 then

Jf (t) =
∫ t

0
e∆(t−s)fsds.

Consider CX = C([0, T];X) and norms ‖f‖Cσ
TX = sup06s<t6T

‖f (t)−f (s)‖
|t−s|σ . Let

L σ
T = CTC σ ∩ Cσ/2

T L∞ with the norm ‖ · ‖L σ
T
= max{‖ · ‖CTC σ , ‖ · ‖Cσ/2

T L∞} .

If σ ∈ (0, 2) then
‖Jf‖L σ

T
. (1 + T)‖f‖CTC σ−2

‖t 7→ Ptu‖L σ
T
. ‖u‖σ.
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Product and paraproduct estimates

Deconstruction of a product: f ∈ C ρ, g ∈ C γ

fg = ∑
i,j≥−1

∆if ∆jg = f ≺ g + f ◦ g + f � g

f ≺ g = g� f = ∑
i<j−1

∆if ∆jg f ◦ g = ∑
|i−j|≤1

∆if ∆jg

Paraproduct (Bony, Meyer et al.)

f ≺ g ∈ C min(γ+ρ,γ)

f ◦ g ∈ C γ+ρ only if γ + ρ > 0

( 14 / 63 )



Proof. Recall f ∈ C ρ, g ∈ C γ.

i� j⇒ suppF (∆if ∆jg) ⊆ 2jA i ∼ j⇒ suppF (∆if ∆jg) ⊆ 2jB

So if ρ > 0

∆q(f ≺ g) = ∑
j:j∼q

∑
i:i<j−1

∆q(∆if ∆jg)︸ ︷︷ ︸
O(2−iρ−jγ)

= O(2−qγ)⇒ f ≺ g ∈ C γ,

while if ρ < 0

∆q(f ≺ g) = ∑
j:j∼q

∑
i:i<j−1

∆q(∆if ∆jg)︸ ︷︷ ︸
O(2−iρ−jγ)

= O(2−q(γ+ρ))⇒ f ≺ g ∈ C γ+ρ.

Finally for the resonant term we have

∆q(f ◦ g) = ∑
i∼j&q

∆q(∆if ∆jg) = ∑
i&q

O(2−j(ρ+γ))⇒ f ◦ g ∈ C γ+ρ

but only if the sum converges.
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Continuity of PAM for γ > 1

Assume that γ > 1. Let

Γ(v)(t) = Ptv(0) + J(vη)(t)

and assume that v(0) ∈ C γ. By the product estimate

(v, η) ∈ L γ × C γ−2 → vη ∈ L γ−2

if 2γ− 2 > 0. In this case by Schauder estimates J(uη) ∈ L γ so

v ∈ L γ −→ vη ∈ L γ−2 −→ Γ(v) = L −1(vη) ∈ L 2−α.

The map Ψ : η 7→ v is continuous form C γ−2 → L γ

If γ ≤ 1 the above argument breaks down since

(v, η) ∈ C γ × C γ−2 6→ vη ∈ C γ−2

(it is not continuous).
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Enhanching PAM

Let X the solution to
L X = η, X(0, ·) = 0

and let v = eXw. Then

L v = eXL w + eXwL X− eXw|∂xX|2 − eX〈∂xX, ∂xw〉 = vη

so
L w = |∂xX|2 + 〈∂xX, ∂xw〉

Take η = Vε and L Xε = Vε then

∂xXε(t, x) =
∫ t

0

∫
Td

∂xp(t− s, x− y)Vε(y)dyds

=
εd/2−α

(
√

2π)d/2 ∑
k∈Zd

0

∫ t

0
ike−|k|

2(t−s)ds ei〈x,k〉
√

R(εk)g(k).
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Absence of continuity

E[|∂xXε(t, x)|2] = εd−2α

(
√

2π)d ∑
k∈Zd

0

∣∣∣∣∫ t

0
ike−|k|

2(t−s)ds
∣∣∣∣2 R(εk)

=
εd+2−2α

(
√

2π)d ∑
k∈εZd

0

|1− e−|k/ε|2t|2
|k|2 R(k) ∼ ε2−2α

∫
Rd

R(k)
|k|2

If d > 2 and α = 1 we have Vε, Xε → 0 but E[|∂xXε(t, x)|2]→ σ2 > 0!
If d = 2 and α = 1 it even happens that E[|∂xXε(t, x)|2] ∼ | log ε| → +∞.

Note that ∂xXε ∈ CC γ−1 (uniformly in ε) and by product estimates
Xε 7→ |∂xXε|2 is continuous only if γ > 1.

This example show optimality of the condition for the continuity of the
product.
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Fluctuations of |∂xXε|2
Compute

∆q(|∂xXε|2)(t, x) =

εd−2α

(2π)d/2 ∑
k1,k2∈Zd

0

ei〈k1+k2,x〉ρq(k1 + k2)Gε(t, εk1)Gε(t, εk2)g(k1)g(k2).

where

Gε(t, k) = i
k
ε

[1− e−t|k/ε|2 ]
|k/ε|2

√
R(k).

By Wick’s theorem

Cov(g(k1)g(k2), g(k′1)g(k
′
2)) = E[g(k1)g(k′1)]E[g(k2)g(k′2)]

+E[g(k1)g(k′2)]E[g(k2)g(k′1)]

= Ik1+k′1=k2+k′2=0 + Ik1+k′2=k2+k′1=0,

which implies

Var[∆q(|∂xXε|2)(t, x)] =
ε2d−4α

(
√

2π)2d ∑
k1,k2∈Zd

0

(ρq(k1 + k2))
2|G(εk1)|2|G(εk2)|2.
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On one side we have

Var[∆q(|∂xXε|2)(t, x)] . ε2d+4−4α ∑
k1,k2∈εZd

0

(ρq((k1 + k2)/ε))2 |R(k1)||R(k2)|
|k1|2|k2|2

.

. ε2d+4−4α ∑
k1,k2∈εZd

0

|R(k1)||R(k2)|
|k1|2|k2|2

. ε4−4α

(∫
dk
|R(k)|
|k|2

)2

On the other side in order to satisfy k1 + k2 ∼ ε2q we must have
k2 . k1 ∼ ε2q or ε2q . k1 ∼ k2. In the first case

ε2d+4−4α ∑
k1,k2∈εZd

0

Ik2.k1∼ε2q
|R(k1)||R(k2)|
|k1|2|k2|2

. 2q(d−2)ε2d+2−4α ∑
k2∈εZd

0

Ik2.ε2q
|R(k2)|
|k2|2

. (ε2q)d−2ε4−4α‖R‖∞

∫
dk
|R(k)|
|k|2 . (ε2q)d−2ε4−4α‖R‖∞σ2

since |R(k1)|/|k1|2 . ‖R‖∞/(ε2q)2.
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If ε2q . k1 ∼ k2 we similarly have

ε2d+4−4α ∑
k1,k2∈εZd

0

Iε2q.k1∼k2

|R(k1)||R(k2)|
|k1|2|k2|2

. 2q(d−2)ε2d+2−4α‖R‖∞ ∑
k2∈εZd

0

Iε2q.k2

|R(k2)|
|k2|2

. (ε2q)d−2ε4−4α‖R‖∞σ2

so we can conclude that

Var[∆q(|∂xXε|2)(t, x)] . ε4−4α min(σ4, (ε2q)d−2‖R‖∞σ2).

Let cε(t) = E[|∂xXε|2(t, x)] and |∂xXε|�2 = |∂xXε|2 − cε

By hypercontractivity of Gaussian measures

E[||∂xXε|�2(t, x)|p] .p (E[||∂xXε|�2(t, x)|2])p/2 . (ε4−4α min(1, (ε2q)d−2))p/2

Let α = 1 then when d > 2, |∂xXε|�2 → 0 and |∂xXε|2 → cε in C[δ,T]C
0−.

and when d = 2, |∂xXε|�2 → |∂xX|�2 in CTC 0−.
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Continuity of the transformed problem

Consider
L w = θ + 〈∂xX, ∂xw〉

with X ∈ CC γ and θ ∈ CC 2γ−2. This equation can be solved for w ∈ CC 2γ

(∂xX, ∂xw) ∈ CC γ−1 × CC 2γ−1 7→ 〈∂xX, ∂xw〉 ∈ CC 3γ−2

is continuous if 3γ− 2 > 0. In this case we have

θ + 〈∂xX, ∂xw〉 ∈ CC 2γ−2 ⇒ J(θ + 〈∂xX, ∂xw〉) ∈ CC 2γ

If 3γ− 2 > 0 there exists a continuous map

Ψ : (X, θ) ∈ CC γ × CC 2γ−2 7→ w ∈ CC γ
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Lack of continuity, revisited

Setting wε = Ψ(JVε, |∂xJVε|2) and uε = eJVε wε we have that

L uε = uεVε

Let α = 1 and d > 2. When ε→ 0 JVε → 0 in CC γ and |∂xJVε|2 in CC 2γ−2

which implies
wε → w = Ψ(0, σ2), uε → u = w

respectively in CC 2γ and CC γ.

Now
L uε = uεVε

but
L u = σ2 6= 0.

Showing that the limit is not what we expected! Even worse when d = 2

since now
|∂xJVε|2 → +∞ + |∂xJξ|�2
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A first renormalization

Introduce the renormalized variable

ũε(t) = e−
∫ t

0 cε(s)dsuε(t)

solving
L ũε = Vεũε − cεũε

Then
L w̃ε = (|∂xXε|2 − cε) + 〈∂xXε, ∂xw̃ε〉

So now w̃ε = Ψ(Xε, |∂xXε|2 − cε) and when ε→ 0 we have

w̃ε → w̃ = Ψ(X, |∂xX|�2)

In this case the limit is still random. What is the equation satisfied by
ũ = eXw̃?

Formally
L ũ = ”ξũ−∞ũ”.

Both terms in the r.h.s. are not well defined but their sum is.

( 24 / 63 )



Paracontrolled analysis
In order to give a meaning to the PDE for v when γ < 1 we need to
understand the properties of the product vξ.

Note that Xξ can be given a well defined meaning by the formula

Xξ = XL X = L X2 + |∂xX|2

so that
XεVε − cε = L X2

ε + |∂xXε|�2

and then by taking limits we have

”Xξ −∞” = L X2 + |∂xX|�2

We would like to say that v = eXw is somewhat as irregular as X (since w is
twice as regular) and use this to control vξ as we were able to control Xξ.

A possible rigorous formulation of this "as irregular as" is given by
paracontrolled distributions. We want to show that there exists a function vX

such that
v− vX ≺X ∈ CC 2γ

and that this will help us in the analysis of vξ.
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Paralinearization

Lemma

Let α ∈ (0, 1), β ∈ (0, α], and let F ∈ C1+β/α
b . There exists a locally bounded map

RF : C α → C α+β such that

F(f ) = F′(f )≺ f + RF(f ) (2)

for all f ∈ C α. More precisely, we have

‖RF(f )‖α+β . ‖F‖C1+β/α
b

(1 + ‖f‖1+β/α
α ).

If F ∈ C2+β/α
b , then RF is locally Lipschitz continuous:

‖RF(f )− RF(g)‖α+β . ‖F‖C2+β/α
b

(1 + ‖f‖α + ‖g‖α)
1+β/α‖f − g‖α.
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Proof of paralinearization

The difference F(f )− F′(f )≺ f is given by

RF(f ) = F(f )− F′(f )≺ f = ∑
i>−1

[∆iF(f )− Si−1F′(f )∆if ] = ∑
i>−1

ui,

and every ui is spectrally supported in a ball 2iB. For i < 1, we simply
estimate ‖ui‖L∞ . ‖F‖C1

b
(1 + ‖f‖α). For i > 1

ui(x) =
∫

Ki(x− y)K<i−1(x− z)[F(f (y))− F′(f (z))f (y)]dydz

=
∫

Ki(x− y)K<i−1(x− z)[F(f (y))− F(f (z))− F′(f (z))(f (y)− f (z))]dydz,

where Ki = F−1ρi, K<i−1 = ∑j<i−1 Kj, and where we used that∫
Ki(y)dy = ρi(0) = 0 for i > 0 and

∫
K<i−1(z)dz = 1 for i > 1.
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Proof of paralinearization (continued)

Now we can apply a first order Taylor expansion to F and use the
β/α–Hölder continuity of F′ in combination with the α–Hölder continuity of
f , to deduce

|ui(x)| . ‖F‖C1+β/α
b
‖f‖1+β/α

α

∫
|Ki(x− y)K<i−1(x− z)| × |z− y|α+βdydz

. ‖F‖C1+β/α
b
‖f‖1+β/α

α 2−i(α+β).

The estimate for RF(f ) follows.

The estimate for RF(f )− RF(g) is shown in the same way.
�
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Commutator lemma

Lemma

Assume that α, β, γ ∈ R are such that α + β + γ > 0 and β + γ 6= 0. Then for
f , g, h ∈ C∞ the trilinear operator

C(f , g, h) = ((f ≺ g) ◦ h)− f (g ◦ h)

allows for the bound

‖C(f , g, h)‖β+γ . ‖f‖α‖g‖β‖h‖γ, (3)

and can thus be uniquely extended to a bounded trilinear operator from
C α×C β×C α to C β+γ.
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Proof of the commutator lemma

Assume β + γ < 0. By definition

C(f , g, h) = ∑
i,j,k,`

∆i(∆jf ∆kg)∆`h(Ij<k−1I|i−`|61 − I|k−`|61)

= ∑
i,j,k,`

∆i(∆jf ∆kg)∆`h(Ij<k−1I|i−`|61I|k−`|6N − I|k−`|61),

where we used that Sk−1f ∆kg has support in an annulus 2kA , so that
∆i(Sk−1f ∆kg) 6= 0 only if |i− k| 6 N− 1 for some fixed N ∈ N, which in
combination with |i− `| 6 1 yields |k− `| 6 N. Now for fixed k, the term
∑` I26|k−`|6N∆kg∆`h is spectrally supported in an annulus 2kA , so that

∑k,` I26|k−`|6N∆kg∆`h ∈ C β+γ and we may add and subtract
f ∑k,` I26|k−`|6N∆kg∆`h to C(f , g, h) while maintaining the bound (3).

( 30 / 63 )



Proof of the commutator lemma (continued)

It remains to treat

∑
i,j,k,`

∆i(∆jf ∆kg)∆`hI|k−`|6N(Ij<k−1I|i−`|61 − 1)

= − ∑
i,j,k,`

∆i(∆jf ∆kg)∆`hI|k−`|6N(Ij>k−1 + Ij<k−1I|i−`|>1). (4)

We estimate both terms on the right hand side separately. For m > −1 we
have∥∥∥∆m

(
∑

i,j,k,`
∆i(∆jf ∆kg)∆`hI|k−`|6NIj>k−1

)∥∥∥
L∞

6 ∑
j,k,`

I|k−`|6NIj>k−1‖∆m(∆jf ∆kg∆`h)‖L∞ . ∑
j&m

∑
k.j

2−jα‖f‖α2−kβ‖g‖β2−kγ‖h‖γ

. ∑
j&m

2−j(α+β+γ)‖f‖α‖g‖β‖h‖γ . 2−m(α+β+γ)‖f‖α‖g‖β‖h‖γ,

using β + γ < 0.
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Proof of the commutator lemma (end)

It remains to estimate the second term in (4). For |i− `| > 1 and i ∼ k ∼ `,
any term of the form ∆i()∆`() is spectrally supported in an annulus 2`A ,
and therefore∥∥∥∆m

(
∑

i,j,k,`
∆i(∆jf ∆kg)∆`hI|k−`|6NIj<k−1I|i−`|>1

)∥∥∥
L∞

. ∑
i,j,k,`

Ij<k−1Ii∼k∼`∼m‖∆i(∆jf ∆kg)∆`h‖L∞

. ∑
j.m

2−jα‖f‖α2−mβ‖g‖β2−mγ‖h‖γ . 2−m(β+γ)‖f‖α‖g‖β‖h‖γ.

�
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Paracontrolled analysis of v = eXw

By paralinearization we have

eX = eX ≺X + CC 2γ

Using the fact that

‖f ≺ (g≺ h)− (fg)≺ h‖α+β . ‖f‖α‖g‖α‖h‖β,

we have also

eXw = w≺ (eX ≺X + CC 2γ) + eX ◦w + w≺ eX = (eXw)≺X + CC 2γ

which means indeed that

v− vX ≺X ∈ CC 2γ

with vX = v.
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The Good, the Ugly, the Bad

The product vξ can be decomposed as

vξ = v≺ ξ︸ ︷︷ ︸
The Bad, ∈ CC γ−2

+ v ◦ ξ︸︷︷︸
The Ugly

+ v� ξ︸ ︷︷ ︸
The Good, ∈ CC 2γ−2

.

The real problem is given by the resonant term v ◦ ξ. Using
v] = v− vX ≺X ∈ CC 2γ we have

v ◦ ξ = (vX ≺X) ◦ ξ + v] ◦ ξ︸ ︷︷ ︸
CC 3γ−2

By the commutator lemma:

v ◦ ξ = vX(X ◦ ξ) + v] ◦ ξ + CC 2γ−2

So
vξ = Θ(vX, v], ξ, X ◦ ξ) = v≺ ξ + vX(X ◦ ξ) + CC 2γ−2

where the function Θ is continuous.
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Structure of solution and paracontrolled distributions

. So in the limit ε→ 0 we have

ũεVε − cεũε = ũε ≺ Vε + ũε(Xε ◦Vε − cε) + C(ũε, Xε, Vε) + ũ]ε ◦Vε + ũε � Vε

→ ũ ≺ ξ + ũ(X � ξ) + C(ũ, X, ξ) + ũ] ◦ ξ + ũ � ξ

=: ũ � ξ = Φ(ũ, ũ], X, X � ξ)

where X � ξ := limε→0(Xε ◦Vε − cε).

. Question: What is the equation satisfied by ũ = limε→0 ũε?

Indeed
L ũ = ”ũξ −∞ũ” = ũ � ξ = Φ(ũ, ũ], X, X � ξ).

Where the r.h.s. is well defined since ũ is paracontrolled by X.
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Paracontrolled distributions

Paracontrolled distributions

We say y ∈ D
ρ
x if x ∈ C γ

y = yx ≺ x + y]

with yx ∈ C ρ and y] ∈ C γ+ρ.

. Paralinearization. Let ϕ : R→ R be a sufficiently smooth function and
x ∈ C γ, γ > 0. Then

ϕ(x) = ϕ′(x) ≺ x + C 2γ

. Another commutator: f , g ∈ C ρ, x ∈ C γ

f ≺ (g ≺ h) = (fg) ≺ h + C ρ+γ

. Stability. (ρ ≤ γ)
ϕ(y) = (ϕ′(y)yx) ≺ x + C ρ+γ

so we can take ϕ(y)x = ϕ′(y)yx.
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Solution theory for general signals

Goal: Show that Ψ : η 7→ u factorizes as

η
X−→ X(η) = (η, Jη ◦ η)

Φ−→ u

. Analytic step: show that when γ ∈ (2/3, 1):

Φ : X → C γ

is continuous. X = ImX ⊆ C γ−2 × C 2γ−2 is the space of enhanced signals (or
rough paths, or models).

But in general X is not a continuous map C γ−2 → C γ−2 × C 2γ−2.

. Probabilistic step: prove that there exists a "reasonable definition" of X(ξ)
when ξ is a white noise. X(ξ) is an explicit polynomial in ξ so direct
computations are possible.

Tools: Besov embeddings Lp(Ω; C θ)→ Lp(Ω; Bθ′
p,p) ' Bθ′

p,p(Lp(Ω)), Gaussian
hypercontractivity Lp(Ω)→ L2(Ω), explicit L2 computations.
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Paracontrolled gPAM (I) - the r.h.s.

u : R+ ×T2 → R, ξ ∈ C γ−2, γ = 1−. We want to solve (have uniform
bounds for)

L u = F(u)ξ = F(u) ≺ ξ + F(u) ◦ ξ + F(u) � ξ.

. Paracontrolled ansatz. Take L X = ξ, X ∈ C γ and assume that u ∈ D
γ
X :

u = uX ≺ X + u]

with u] ∈ C 2γ and uX ∈ C γ.

. Paralinearization:

F(u) = F′(u) ≺ u + C 2γ = (F′(u)uX) ≺ X + C 2γ

. Commutator lemma:

F(u) ◦ ξ = ((F′(u)uX) ≺ X) ◦ ξ + C 2γ ◦ ξ

= (F′(u)uX)(X ◦ ξ)︸ ︷︷ ︸
∈C 2γ−2

+C(F′(u)uX, X, ξ) + C 2γ ◦ ξ︸ ︷︷ ︸
∈C 3γ−2

if we assume that (X ◦ ξ) ∈ C 2γ−2.
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Paracontrolled gPAM (II) - the l.h.s.

So if u is paracontrolled by X:

u = uX ≺ X + u]

and if X ◦ ξ ∈ C 2γ−2 we have a control on the r.h.s. of the equation:

F(u)ξ = F(u) ≺ ξ + F′(u)uX(X ◦ ξ) + C 3γ−2

What about the l.h.s.?

L u = L uX ≺ X + uX ≺ ξ +L u] − ∂xuX ≺ ∂xX

so letting uX = F(u) we have

L u] = −L F(u) ≺ X + F′(u)F(u)(X ◦ ξ) + C 2γ−2
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Paracontrolled gPAM (III) - the paracontrolled fixed point.

The PDE
L u = F(u)ξ

is equivalent to the system

∂tX =ξ

∂tu] =(F′(u)F(u))(X ◦ ξ)−L f (u) ≺ X︸ ︷︷ ︸
”∈”C 2γ−2

+R(f , u, X, ξ) ◦ ξ︸ ︷︷ ︸
∈C 3γ−2

u =F(u) ≺ X + u]

. The system can be solved by fixed point (for small time) in the space D
γ
X if

we assume that
X ∈ C γ, (X ◦ ξ) ∈ C 2γ−2.
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Structure of the paracontrolled solution

. When ξ smooth, the solution to

∂tu = F(u)ξ, u(0) = u0

is given by u = Φ(u0, ξ, X ◦ ξ) where

Φ : Rd × C γ−2 × C 2γ−2 → C γ

is continuous for any γ > 2/3 and z = Φ(u0, ξ, ϕ) is given by
z =F(z) ≺ X + z]

∂tz] =(F′(z)F(z))ϕ−L F(z) ≺ X︸ ︷︷ ︸
”∈”C 2γ−2

+R(F, z, X, ξ) ◦ ξ︸ ︷︷ ︸
∈C 3γ−2

. If (ξn, Xn ◦ ξn)→ (ξ, η) in C γ−2 × C 2γ−2 and

∂tun = f (un)ξn, u(0) = u0

then un → u = Φ(u0, ξ, η).
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Relaxed form of the PDE

. Note that in general we can have ξ1,n → ξ, ξ2,n → ξ and

lim
n

X1,n ◦ ξ1,n 6= lim
n

X2,n ◦ ξ2,n

. Take ξn, ξ smooth but ξn → ξ in C γ−2. It can happen that

lim
n

Xn ◦ ξn = X ◦ ξ + ϕ ∈ C 2γ−1

In this case un → u and u = Φ(ξ, X ◦ ξ + ϕ) solves the equation

L u = F(u)ξ + F′(u)F(u)ϕ.

The limit procedure generates correction terms to the equation.

The original equation relaxes to another form in which additional terms are
generated.
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"Ito" form of the PDE

In the smooth setting u = Φ(ξ, X ◦ ξ + ϕ) solves

L u = F(u)ξ + F′(u)F(u)ϕ.

If we choose ϕ = −X ◦ ξ then

v = Φ(ξ, X ◦ ξ + ϕ) = Φ(ξ, 0)

solves
L v = F(v)ξ − F′(v)F(v)X ◦ ξ

and has the particular property of being a continuous map of ξ ∈ C γ−2

alone.
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The renormalization problem

If ξ is the space white noise we have

ξ ∈ C−1−, X ∈ C([0, T]; C 1−)

and
X ◦ ξ = X ◦ LX =

1
2
L(X ◦X) +

1
2
(DX ◦DX)

=
1
2
L(X ◦X)− (DX ≺ DX) +

1
2
(DX)2

But now
1
2
(DX)2 = c + CC 0−

with c = +∞!.

No obvious definition of X ◦ ξ can be given. But there exists cε such that

Xε ◦ ξε − cε → ”X � ξ” in CC 0−.
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The renormalized gPAM

To cure the problem we add a suitable counterterm to the equation

Lu = f (u) � ξ = f (u)ξ − c(f ′(u)f (u))

this defines a new product, denoted by �. Now

f (u) ◦ ξ− c(f ′(u)f (u)) = (f ′(u)f (u))(X ◦ ξ− c)+C(f ′(u)f (u), X, ξ)+R(f , u, X) ◦ ξ

. The renormalized gPAM is equivalent to the equation

Lu] = −Lf (u) ≺ X + Df (u) ≺ DX + (f ′(u)f (u))(X ◦ ξ − c)

+C(f ′(u)f (u), X, ξ) + R(f , u, X) ◦ ξ

together with u = f (u) ≺ X + u] and where

X ∈ C 1−, X � ξ = (X ◦ ξ − c) ∈ C 0−, u] ∈ C 2−.
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Finally a theorem

Theorem
Let d = 2, α = 1, γ = 1− and small T > 0. There exist constants cε such that
letting uε the solution to

L uε = VεF(uε)− cεF′(uε)

then uε → u in C γ as ε→ 0 and u ∈ D
2γ
X is the unique weak solution in D

2γ
X to

the equation

L u = ξ � F(u) = F(u) ≺ ξ + F′(u)(X � ξ) + G(uX, u], X)

where
ξ = lim

ε→0
Vε, X � ξ = lim

ε→0
Xε ◦Vε − cε

in C γ−2 and C 2γ−2 resp. and ξ has the law of the white noise on T2.
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The KPZ equation
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Fluctuations of a growing interface

∆h(t, x)

h(t, x)

ξ(t, x)
diffusion

drift F (∇h(t, x))

noise

A model for random interface growth (think e.g. expansion of colony of
bacteria): h : R+ ×R→ R,

∂th(t, x) = κ∆h(t, x)︸ ︷︷ ︸
relaxation

+ F(∂xh(t, x))︸ ︷︷ ︸
slope-dependent growth

+ η(t, x)︸ ︷︷ ︸
noise with microscopic correlations

( 48 / 63 )



Fluctuations of a growing interface
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The Kardar–Parisi–Zhang equation

I Kardar–Parisi–Zhang ’84: slope-dependent growth given by F(∂xh), in a
certain scaling regime of small gradients:

F(∂xh) = F(0) + F′(0)∂xh + F′′(0)(∂xh)2 + . . .

I KPZ equation is the universal model for random interface growth

∂th(t, x) = κ∆h(t, x)︸ ︷︷ ︸
relaxation

+ λ[(∂xh(t, x))2 −∞]︸ ︷︷ ︸
renormalized growth

+ ξ(t, x)︸ ︷︷ ︸
space-time white noise

I This derivation is highly problematic since ∂xh is a distribution. But:
Hairer, Quastel (2014, unpublished) justify it rigorously via scaling of
smooth models and small gradients.

I KPZ equation is suspected to be universal scaling limit for random
interface growth models, random polymers, and many particle systems;

I contrary to Brownian setting: KPZ has fluctuations of order t1/3; large
time limit distribution of t−1/3h(t, t2/3x) is expected to be universal in a
sense comparable only to the Gaussian distribution.
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KPZ and its siblings:

I KPZ equation:

L h(t, x) = ”(∂xh(t, x))2 −∞” + ξ(t, x);

h : R+ ×R→ R, L = ∂t − ∆ heat operator, ξ space-time white noise;
I Burgers equation:

L u(t, x) = ”∂x(u(t, x)2)” + ∂xξ(t, x);

solution is (formally) given by derivative of the KPZ equation: u = ∂xh;
I solution to KPZ (formally) given by Cole-Hopf transform of the

stochastic heat equation: h = log w, where w solves

L w(t, x) = ”w(t, x) � ξ(t, x)”.

I All three are universal objects, that are expected to be scaling limits of a
wide range of particle systems.
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Stochastic Burgers equation

Take u = Dh

Lu = Dξ + Du2

to obtain the stochastic Burgers equation (SBE) with additive noise.

B Invariant measure: Formally the SBE leaves invariant the space white
noise: if u0 has a Gaussian distribution with covariance
E[u0(x)u0(y)] = δ(x− y) then for all t > 0 the random function u(t, ·) has a
Gaussian law with the same covariance.

B First order approximation: Let X(t, x) be the solution of the linear
equation

∂tX(t, x) = ∂2
xX(t, x) + ∂xξ(t, x), x ∈ T, t > 0

X is a stationary Gaussian process with covariance

E[X(t, x)X(s, y)] = p|t−s|(x− y).

Almost surely X(t, ·) ∈ C γ for any γ < −1/2 and any t ∈ R. For any t ∈ R
X(t, ·) has the law of the white noise over T.
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Expansion for the SBE
Recall the SBE:

L u = Du2 + ξ

B Let u = X + u1 then

L u1 = ∂x(u1 + X)2 = ∂xX2︸ ︷︷ ︸
−2−

+2∂x(u1X) + ∂xu2
1

B Let X be the solution to

L X = ∂xX2 ⇒ X ∈ C 0−

and decompose further u1 = X + u2. Then

L u2 = 2∂x(X X)︸ ︷︷ ︸
−3/2−

+2∂x(u2X) + ∂x(X X )︸ ︷︷ ︸
−1−

+2∂x(u2X ) + ∂x(u2)
2

B Define L X = 2∂x(X X) and u2 = X + u3 then X ∈ C 1/2−

L u3 = 2∂x(u3X)︸ ︷︷ ︸
−3/2−

+ 2∂x(X X)︸ ︷︷ ︸
−3/2−

+ ∂x(X X )︸ ︷︷ ︸
−1−

+2∂x(u2X ) + ∂x(u2)
2
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Expansion /II

B The partial expansion for the solution reads

u = X + X + 2X + U

L U = 2∂x(UX) + 2∂x(X X) + ∂x(X X ) + 2∂x((2X +U)X )+ ∂x(2X +U)2

= 2∂x(UX) +L (2X + X ) + 2∂x((2X + U)X ) + ∂x(2X + U)2

and the regularities for the driving terms

X X X X X
−1/2− 0− 1/2− 1/2− 1−

We can assume U ∈ C 1/2− so that the terms

2∂x((2X + U)X ) + ∂x(2X + U)2

are well defined.

The remaining problem is to deal with 2∂x(UX).
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Paracontrolled ansatz for SBE

B Make the following ansatz U = U′ ≺ Q + U]. Then

L U = L U′ ≺ Q + U′ ≺ L Q− ∂xU′ ≺ ∂xQ + LU]

while

L U = 2∂x(UX) +L (2X + X ) + 2∂x((2X + U)X ) + ∂x(2X + U)2︸ ︷︷ ︸
R(U)

= 2∂x(U ≺ X) + 2∂x(U ◦X) + 2∂x(U � X) + R(U)

= 2(U ≺ ∂xX) + 2(∂xU ≺ X) + 2∂x(U ◦X) + 2∂x(U � X) + R(U)

so we can set U′ = 2U and L Q = ∂xX and get the equation

L U] = −L U′ ≺ Q + ∂xU′ ≺ ∂xQ + 2(∂xU ≺ X) + 2∂x(U ◦X) + 2∂x(U �
X) + R(U)

B Observe that Q, U, U′ ∈ C 1/2− and we can assume that U] ∈ C 1−.
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Commutator

B The difficulty is now concentrated in the resonant term U ◦X which is not
well defined.

B The paracontrolled ansatz and the commutation lemma give

U ◦X = (2U ≺ Q) ◦X + U] ◦X = 2U(Q ◦X) + C(2U, Q, X)︸ ︷︷ ︸
1/2−

+U] ◦X︸ ︷︷ ︸
1/2−

B A stochastic estimate shows that Q ◦X ∈ C 0−
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Paracontrolled solution to SBE

B The final system reads

u = X + X + 2X + U

U = U′ ≺ Q + U], U′ = 2X + 2U

L U] = 4∂x(U(Q ◦X)) + 4∂xC(U, Q, X) + 2∂x(U] ◦X)− 2L U ≺ Q

+2∂xU ≺ ∂xQ + 2(∂xU ≺ X) + 2∂x(U � X) + R(U)

B This equation has a (local in time) solution U = Φ(X(ξ)) which is a
continuous function of the data X(ξ) given by a collection of multilinear
functions of ξ:

X(ξ) = (X, X , X , X , X , X ◦Q)
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Burgers equation and paracontrolled distributions

L u(t, x) = ∂xu2(t, x) + ∂xξ(t, x), u(0) = u0.

Paracontrolled Ansatz

u ∈Prbe if u = X + X + 2X + uQ with

uQ = u′ ≺ Q + u].

I Paracontrolled structure: Can define u2 continuously as long as
(Q ◦X) ∈ C([0, T], C 0−) is given (together with tree data
X, X , X , X , X ).

I Obtain local existence and uniqueness of paracontrolled solutions.
Solution depends pathwise continuously on extended data
X(ξ) = (ξ, X, X , X , X , X , Q ◦X).
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KPZ equation

KPZ equation:

L h(t, x) = (∂xh(t, x))2 + ξ(t, x), h(0) = h0.

Expect h(t) ∈ C 1/2−, so ∂xh(t) ∈ C−1/2− and (∂xh(t))2 not defined. But:
expand

u = Y + Y + 2Y + hP,

where L Y = ξ, L Y = ∂xY∂xY, . . . In general: ∂xYτ = Xτ . Make
paracontrolled ansatz for hP:

hP = π<(h′, P) + h]

with h′ ∈ C([0, T], C 1/2−), h] ∈ C([0, T], C 2−), L P = X. Write h ∈Pkpz.

Can define (∂xh(t))2 for h ∈Pkpz and obtain local existence and uniqueness
of solutions.
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KPZ and Burgers equation

h ∈Pkpz if

h = Y + Y + 2Y + hP, hP = h′ ≺ P + h].

u ∈Prbe if

u = X + X + 2X + uQ, uQ = u′ ≺ Q + u].

I If h ∈Pkpz, then ∂xh ∈Prbe.
I If h solves KPZ equation, then u = ∂xh solves Burgers equation with

initial condition u(0) = ∂xh0.
I If u ∈Prbe, then any solution h of L h = u2 + ξ is in Pkpz.
I If u solves Burgers equation with initial condition u(0) = ∂xh0, and h

solves L h = u2 + ξ with initial condition h(0) = h0, then h solves KPZ
equation.
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KPZ and heat equation
Heat equation:

L w(t, x) = w(t, x) � ξ(t, x) = w(t, x)ξ(t, x)−w(t, x) ·∞, w(0) = w0.

Paracontrolled ansatz: w ∈Prhe if

w = eY+Y +2Y wP, wP = π<(w′, P) + w]

(comes from Cole-Hopf transform).
I Slightly cheat to make sense of product w � ξ for w ∈Prhe:

w � ξ = L w− eY+Y +2Y
[
L wP − [L (Y + Y ) + (∂x(Y + Y + 2Y ))2]wP

]
+ 2eY+Y +2Y ∂x(Y + Y + 2Y )∂xwP;

(agrees with renormalized pointwise product w � ξ in smooth case and
with Itô integral in white noise case, continuous in extended data).

I Obtain global existence and uniqueness of solutions.
I One-to-one correspondence between Pkpz and strictly positive

elements of Prhe.
I Any solution of KPZ gives solution of heat equation. Any strictly

positive solution of heat equation gives solution of KPZ equation.
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Thanks
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