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Abstract

These are the notes for a course at the 18th Brazilian School of Probability held
from August 3rd to 9th, 2014 in Mambucaba. The aim of the course is to introduce
the basic problems of non-linear PDEs with stochastic and irregular terms. We ex-
plain how it is possible to handle them using two main techniques: the notion of
energy solutions and that of paracontrolled distributions, recently in-
troduced in [GIP13]. In order to maintain a link with physical intuitions, we moti-
vate such singular SPDEs via a homogenization result for a diffusion in a random
potential.
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1 Introduction

The aim of these lectures is to explain how to apply controlled path ideas [Gub04] to
solve simple problems in singular PDEs. The hope is that the insight gained by doing so
can inspire new applications or the construction of other more powerful tools to analyze
a wider class of problems.

We discuss some problems involving singular stochastic non-linear parabolic equa-
tions from the point of view of controlled paths. To understand the origin of such singu-
lar equations, we have chosen to present the example of a homogenization problem for
a singular potential in a linear parabolic equation. This point of view has the added ben-
efit that it allows us to track back the renormalization needed to handle the singularities
as effects living on other scales than those of interest. The basic problem is that of having
to handle effects of the microscopic scales and their interaction through non-linearities
on the macroscopic behavior of the solution.

Mathematically, this problem translates into the attempt of making Schwartz’s the-
ory of distribution coexist with non-linear operations which are notoriously not con-
tinuous in the usual topologies on distributions. This is a very old problem of analysis
and has been widely studied. The additional input which is not present in the usual
approaches is that the singularities which force us to treat the problem in the setting
of Schwartz’s distributions are of a stochastic nature. So we dispose of two handles on
the problem: the analytical one and the probabilistic one. The right mix of the two will
provide an effective solution to a wide class of problems.

A first and deep understanding of these problems has been obtained starting from
the late "90s by T. Lyons [Lyo98], who introduced a theory of rough paths in order to set-
tle the conflict of topology and non-linearity in the context of driven differential equa-
tions, or more generally in the context of the non-linear analysis of time—varying signals.
Nowadays there are many expositions of this theory [LQO02, [EV10, LCL07, [FH14] and we
refer the reader to the literature for more details.



In [Gub04, \Gub10], the notion of controlled paths has been introduced in order to
extend the applicability of the rough path ideas to a larger class of problems that are not
necessarily related to the integration of ODEs but which still retain the one-dimensional
nature of the directions in which the irregularity manifest itself. The controlled path
approach has been used to make sense of the evolution of irregular objects such as vortex
filaments and certain SPDEs. Later Hairer understood how to apply these ideas to the
long standing problem of the Kardar-Parisi-Zhang equation [Hail3], and his insights
prompted the researchers to try more ambitious approaches to extend rough paths to a
multidimensional setting.

In [GIP13], in collaboration with P. Imkeller, we introduced a notion of paracontrolled
distributions which is suitable suitable to handle a wide class of SPDEs which were well
out of reach with previously known methods. Paracontrolled distributions can be un-
derstood as an extension of controlled paths to a multidimensional setting, and they are
based on new combinations of basic tools from harmonic analysis.

At the same time, Hairer managed to devise a vast generalization of the basic con-
struction of controlled rough paths in the multidimensional and distributional setting,
which he called the theory of reqularity structures [Hail4] and which subsumes standard
analysis based on Holder spaces and controlled rough path theory but goes well beyond
that. Just few days after the lectures in Mambucaba took place, it was announced that
Martin Hairer was awarded a Fields Medal for his work on SPDEs and in particular
for his theory of regularity structures [Hail4] as a tool for dealing with singular SPDEs.
This prize witnesses the exciting period we are experiencing: we now understand sound
lines of attack to long standing problems, and there are countless opportunities to apply
similar ideas to new problems.

The plan of the lectures is the following. We start by explaining “energy solutions” [G]10,
GJ13], a notion of solution to (a particular class of) singular PDEs which has the advan-
tage of being comparably easy to handle but which also has the inconvenience of not
having a comprehensive uniqueness theory so far. This will allow us to introduce the
reader to SPDEs in a progressive manner, and also to introduce Gaussian tools (Wick
products, hypercontractivity) and to present some of the basic phenomena appearing
when dealing with singular SPDEs. Next we set up the analytical tools we need in
the rest of the lectures: Besov spaces and some basic harmonic analysis based on the
Littlewood-Paley decomposition. Next, in order to motivate the reader and to provide
a physical ground for the intuition to stand on, we discuss a homogenization problem
for the linear heat equation with random potential. This will allow us to derive the need
for the weak topologies we shall use and for irregular objects like white—noise from first
principles and “concrete” applications. The homogenization problem also allows us to
see the renormalization effects appear naturally and to track their mathematical mean-



ing. Starting from these problems we introduce the two—-dimensional parabolic Ander-
son model, the simplest SPDE in which most of the features of more difficult problems
are already present, and we explain how to use paraproducts and the paracontrolled
ansatz in order to keep the non-linear effect of the singular data under control. Then
we go on to discuss the more involved situation of the Stochastic Burgers equation in
one dimension, which is one of the avatars of the Kardar-Parisi-Zhang equation.

Conventions and notations We write a < b if there exists a constant C > 0, indepen-
dent of the variables under consideration, such that a < Cb. Similarly we define >. We
writea =~ bifa < band b < a. If we want to emphasize the dependence of C on the
variable x, then we write a(x) <y b(x).

If i and j are index variables of Littlewood—Paley blocks (to be defined below), then
i < jis to be interpreted as 2! < 2/, and similarly for ~ and <. In other words, i < j
means i < j + N for some fixed N € N that does not depend on i or j.

We use standard multi-index notation: for u € N? we write [u| = g + ...+ yg and
ot =olMl/ay! ... 9yi, aswellas x# = x| - ... x? for x € RY

For a > 0 we write Cj for the functions F : R — R which are [ a] times continuously
differentiable with (a— | @ | )-H6lder continuous derivatives of order | a], equipped with
its natural norm || - ||C;j-

If we write u € €%, then that means that u is in €*~¢ for all ¢ > 0. The €“ spaces
will be defined below.

2 Energy solutions

The first issue one encounters when dealing with singular SPDE:s is the ill-posed char-
acter of the equation, even in a weak sense. Typically, the non-linearity does not make
sense in the natural spaces where solutions live and one has to provide a suitable smaller
space in which it is possible to give an appropriate interpretation to “ambiguous quan-
tities” that are featured in the equation.

Energy solutions [GJ]10, |GJ13]] are a relatively simple tool in order to come up with
well-defined non-linearities. The drawback is that currently the issue of uniqueness is
open, at least in the most interesting cases. It is not clear if uniqueness of energy solu-
tions holds or even how to find conditions that ensure uniqueness. On the other hand,
proving existence of energy solutions or even convergence to energy solutions is usually
a quite simple problem, at least compared to the other approaches like paracontrolled
solutions or regularity structures, where existence requires already quite a large amount
of computations but where uniqueness can be established quite easily afterwards.

Our aim here is to motivate the ideas leading to the notion of energy solutions. We
will not insist on a detailed formulation of all the available results. The reader can always



refer to the original paper [G]J13] for missing details. Applications to the large scale
behavior of particle systems are studied in [GJ10, |GJ14].

We will study energy solutions for the stochastic Burgers equation on the torus T =
R/(2nZ). The unknown u : Ry X T — R should satisfy

il = AU+ Oy u® + 94&,

where £ : R, X T — R is a space-time white noise defined on a given probability space
(Q, F,P) fixed once and for all. That is, £ is a centered Gaussian process indexed by
L?(R, x T) with covariance

E[£(f)E()] = fR g, 2t

The equation has to be understood as a relation for processes which are distributions in
space with sufficiently regular time dependence (for a short introduction to distributions
on T see Section below). In particular, if we test the above relation with ¢ € %7 =
Z(T) := C*(T), denote with u;(¢) the pairing of the distribution u(t,-) with ¢, and
integrate in time over the interval [0, t], we get

t t t
(@) = to(g) + fo us(Ap)ds — fo (12, 3 p)ds — fo £.(9rp)ds.

Let us discuss the various terms in this equation. In order to make sense of u:(¢)

and fot us(Agp)ds, it is enough to assume that for all ¢ € . the mapping (t, w)
u(@)(w) is a stochastic process with continuous trajectories. Next, if we denote M;(¢) =

fot &s(drp)ds then, at least by a formal computation, we have that (M;(¢))i>0,pc is a
Gaussian random field with covariance

E[Mi(@)M;s(P)] = (t A s)OxP, OxP)12(r)-

In particular, for every ¢ € .7 the stochastic process (M;(¢))>0 is a Brownian motion
with covariance

||(P||12{1(T) = <8X(P/ 8x(P>L2(T)-

Here we used the notation M in order to stress the fact that M;(¢) is a martingale in its
natural filtration and more generally in the filtration % = 6(Ms(¢) : s < t, ¢ € HY(T)),
t>0.

The most difficult term is of course the nonlinear one: fot(ug, dx@)ds. In order to
define it, we need to square the distribution u;, an operation which in general can be
quite dangerous. A natural approach would be to define it as the limit of some regular-
izations. For example, if p : R — R is a compactly supported C* function such that
fR p(x)dx =1, and weset p.(-) = p(-/¢)/ e, then we can set N; . (u)(x) = fot(pg +1us)(x)?ds
and define N;(u) = lim,_,0 N; (1) whenever the limit exists in .7 := .”’(T), the space
of distributions on T. Then the question arises which properties u should have for this
convergence to occur.



2.1 The Ornstein—-Uhlenbeck process

Let us simplify the problem and start by studying the linearized equation obtained
by neglecting the non-linear term. Let X be a solution to

t
Xi(p) = Xo(@) + fo X,(Ap)ds + Mi() 1)

forallt > 0Oand ¢ € .. This equation has at most one solution (for fixed Xp). Indeed, the

difference D between two solutions should satisfy D;(¢) = fot D;(Ag)ds, which means
that D is a distributional solution to the heat equation. Taking ¢(x) = ex(x), where

ex(x) = exp(—ikx)/N2n,  keZ,

we get Dy(ex) = —k? fot D;(ex)ds and then by Gronwall’s inequality D¢(ex) = 0 for all
t > 0. This easily implies that D; = 0in .’ forall t > 0.
To obtain the existence of a solution, observe that

t
Xi(ex) = Xo(ex) — sz; Xs(ex)ds + M;(ex)

and that M;(eg) = 0, while for all k # 0 the process B:(k) = M;(ex)/(—ik) is a complex val-
ued Brownian motion (i.e. real and imaginary part are independent Brownian motions
with the same variance). The covariance of f is given by

E[ﬁt(k)ﬁs(m)] = (t A $)Oksm=0

and moreover (k)" = p;(=k) for all k # 0 (where -* denotes complex conjugation), as
well as f:(0) = 0. In other words, (X;(ex)) is a complex—valued Ornstein-Uhlenbeck
process which solves a linear one-dimensional SDE and has an explicit representation
given by the variation of constants formula

t
Xi(ex) = e ¥ Xo(ex) + ik f e =94, B, (k).
0

This is enough to determine X;(¢) forallt > 0 and ¢ € ..

Exercise 1 Show that (X;(ex) : t € Ry, k € Z) is a complex Gaussian random field, that is for all
neN, forallty,...,t, €R,, k1,...,k, € Z, the vector

Re(Xy, (k1)), - - ., Re(Xy, (kn)), Im(X, (k1)), . . ., Im(X, (k)

is multivariate Gaussian. Show that X has mean E[X;(ex)] = e‘ktio(ek) and covariance

tAs
E[(X:(ex) — E[Xt(ex))(Xs(em) = E[Xs(en)])] = K*Oksmeo fo K=K =) g
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as well as
tAs
E[(X¢(ex) — E[X:(ex))(Xs(en) — B[Xs(en)])'] = KOt f e UK gy,
0

In particular,

972
_ezkt

E[IX:(ex) — E[Xi(e0)]P] = 5

Next we examine the Sobolev regularity of X. For this purpose, we need the follow-
ing definition.
Definition 1 Let o € R. Then the Sobolev space H* is defined as

HY := HY(T) := {p € " pllua = ) 1+ kP)plen) < oo} :
keZ

We also write CH® for the space of continuous functions from R, to H*.

Lemma 1 Let y < —1/2 and assume that Xo € H?. Then almost surely X € CHY~.

Proof Let a =y — ¢ and consider

1Xe = Xl = D (1 + KPR 1Xi(er) = Xo(er) .
kezZ

Let us estimate the L27(Q) norm of this quantity for p € N by writing

p P
BIX - Xl = ), | [a+PE] | Xi(er) - Xe(er)I.
k... kpeZ i=1 i=1
By Cauchy-Schwartz, we get
) P |4
BIX - Xl < ) | @+ 1P| |EIXi(er) = Xo(er)P)H7.

ki, kp€Z i=1 i=1

Note now that X;(ex,) — Xs(ex,) is a Gaussian random variable, so that there exists a
universal constant C,, for which

E|Xt(ek[) - Xs(ek[)lzp < CP(Ele(ek,‘) - Xs(ekj)|2)p'

Moreover,

t
Xier) — Xs(ex) = (67X — )X, (ex) + ik f e =4, B,(k),

S



leading to
E|X;(ex) = Xs(er) = (™79 — 1)2E|X(ep)? + k> f g,
5
= (7079 — 126725 X ()2 + (e — 1)%K2 f g,
0
+ k> ft ekt gy

= (e - ;-"25>2|Xo(ek>|2 #0121 - ) 4 (1 - )

For any « € [0, 1] and k # 0, we thus have

EIXi(ex) = Xs(en)* s (K3(t = )" (IXo(ex)* + 1),

while for k = 0 we have E|X;(eg) — Xs(ep)|> = 0. Therefore,

P P
BIX, - Xl >, [ A+ kP | [BIXeer) - Xo(ex)P

k... kp€Zo i=1 i=1
P
=57 > [ ]a+ kP (Xoex) P +1)
k] ..... kpGZO i=1
< (=) D @+ kB E)(Xoler) + 1)
kezZy

< (=) (IXollghos ey + [ D 1+ KPR ).

keZy

If « < —1/2 - x, the sum on the right hand side is finite and we obtain an estimation for
the modulus of continuity of ¢ — X; in L% (Q; H®):
2 2
EllX: = Xsllo < (8= ) P[1+ [ Xollfau]-
Now Kolmogorov’s continuity criterion allows us to conclude that almost surely X €
CH*“ whenever Xy € H***, O

Now note that the regularity of the Ornstein—Uhlenbeck process does not allow us
to form the quantity X? point-wise in time since by Fourier inversion X; = Yy Xi(ex)ey,

and therefore we should have
X(er) = @m)™2 Y Xu(eo)Xe(ew).
{+m=k

Of course, at the moment this expression is purely formal since we cannot guarantee
that the infinite sum converges. A reasonable thing to try is to approximate the square



by regularizing the distribution, taking the square, and then trying to remove the reg-
ularization. Let ITy be the projector of a distribution onto a finite number of Fourier
modes:

(Myp)(x) = D pleney(x).

k<N
Then Iy X;(x) is a smooth function of x and we can consider (ITy X;)? which satisfies
(T X¢)*(ex) = (2m) ™12 Z Liej<n, im|<n Xi(ee) X (em).
C+m=k

We would then like to take the limit N — +co. For convenience, we will perform the
computations below in the limit N = +oco, but one has to come back to the case of finite
N in order to make it rigorous.

Let us introduce the notation Zy = Z \ {0}. Then

E[X}(ex)] = 2m) 260 ) BIXi(e-m)Xi(en)]

meZy
= @m) Pom Y e Xolew) P+ 1) oy 3 m f -2 -5)g
meZo meZy
and
—2m2(t=s) 3o _ —2mt _
m ds (1- )=
2 f =5

meZy mEZo

This is not really a problem since in the equation only components of u?(ex) with k # 0
appear. However, th (ex) is not even a well-defined random variable. For the moment,
let us assume that Xy = 0, which will slightly simplify the computation. If k # 0, we
have

E[|X}(en)] = E[X}e) X (e-)] = @)™ > > E[Xi(er)Xilew)Xi(ee) Xe(en)]:

C+m=k '+m’'=—k

By Wick’s theorem (see [Jan97|], Theorem 1.28), the expectation can be computed in
terms of the covariances of all possible pairings of the four Gaussian random variables
(3 possible combinations):

E[X;(e0)Xi(em)Xi(ee) Xt (emr)] = E[Xi(ee) Xt (en)|E[Xt(ee) Xt (em)]
+E[Xt(eo) Xt (ee) JE[Xt(em) Xt (em)]
+E[Xt(eo) Xt (em ) E[ Xt (en) X1 (er)].

Since k # 0, we have { + m # 0 and ¢’ + m" # 0 which allows us to neglect the first
term since it is zero. By symmetry of the summations, the two other give the same



contribution and we remain with

E[X}eP1=2 > ) E[Xileo)Xi(eo)IEIXi(en)Xi(en)] 2)
C+m=k '+m’'=k
=2 > E[Xi(er)Xile-)IE[Xi(en)Xi(e-n)]
C+m=k
1 _op2 —om?
=§[;k(1—e 201 — 72mt) = Joo,

This shows that even when tested against smooth test functions, th is not in L2(Q). This
indicates that there are problems with th and indeed one can show that Xf(ek) does not
make sense as a random variable.

To understand this better, observe that the Ornstein-Uhlenbeck process can be de-
composed as

t 0
Xi(ey) = ik f eU=)dB, (k) — ike ™! f eF*sdps(k),
where we extended the Brownian motions (B;(k))s>o to two sided complex Brownian
motions by considering independent copies. It is not difficult to show that the second
term gives rise to a smooth function if ¢ > 0, so all the irregularity of X; is described by
the first term which we call Y;(ex). Note that Y;(ex) ~ Nc(0,1/2) forallk € Zpand t € R,
where we write
U ~ Nz(0, 6?)

it I =V +iW, where V and W are independent random variables with distribution

N(0,02/2). The random distribution Y; then satisfies Y;(¢) ~ N(0, ||(p||i2 @ /2), or in

other words it is (1/V?2 times) the white noise on T. It is also possible to deduce that the
white noise on T is indeed the invariant measure of the Ornstein—Uhlenbeck process,
that it is the only one, and that it is approached quite fast.

So we should expect that, at fixed time, the regularity of the Ornstein-Uhlenbeck
process is like that of the space white noise and this is a way of understanding our
difficulties in defining th since this will be, modulo smooth terms, the square of the
space white noise.

A different matter is to make sense of the time—-integral of d, th Let us give it a name

and call it Ji(p) = fot 9 X2(¢p)ds. For J;(ex), the computation of its variance gives a quite
different result.

Lemma 2 Almost surely, | € CV/2-H~1/2~,

10



Proof Proceeding as in (2), we have now

t t
e =26 [ [ 3 BIX e Xele-ELX o) X (oo dsdl”

{+m=k

If s > s/, we have
1 , ,
E[Xs(ee)Xs(e—p)] = Ee—fz(s—s )(1 _ 6_2525 ),

and therefore

k2 t t ’ ’ ’
E[Ut(ek)lz] — ? f f Z e—(£2+m2)|s—s |(1 _ e—2€2(5 /\S))(l _ e—2m2(s /\s))deS/
0 0

{+m=k
k2 bt 2,2 © 2,2
< _f f Z e—(f +m )|s—5’|deS/ < K2t Z f e—(f +m )rdr
2 0 JO rim=k trm=k Y0
1
_ 12
=kt Z 2+ m?
t+m=k
Now for k # 0
Z 1 <f dx < i
2 2~ 2 _ 2~ 4
£+m:k€ +m r X2+ (k—x) k|

so finally E[|J;(ex)|?] < |k|t. Redoing a similar computation in the case J;(ex) — Js(ex),
we obtain E[|];(ex) — Js(ex)[*] < |k| X |t — s|. To go from this estimate to a path-wise
regularity result of the distribution (J;);, following the line of reasoning of Lemma
we need to estimate the p-th moment of J;(ex) — Js(ex). Gaussian hypercontractivity (see
Theorem 3.50 of [Jan97]) tells us that all L moments of polynomials of Gaussian random
variables are equivalent and in particular that

ElI]i(ex) = Js(e)|™*] sp (EllJi(ex) = Js(ex)P1)P.
From here we easily derive that almost surely | € C1/2-H~1/2-, O

This shows that J,X? exists as a space-time distribution but not as a continuous
function of time with values in distributions in space. The key point in the proof of
Lemma [2|is the fact that the Ornstein-Uhlenbeck process decorrelates quite rapidly in
time.

The construction of the process | does not solve our problem since we need similar
properties for the full solution u of the non-linear dynamics (or for some approxima-
tions thereof), and all we have done so far relies on explicit computations and the specific
Gaussian features of the Ornstein—Uhlenbeck process. But at least this give us a hint that
indeed there could exist a way of making sense of the term dyu(t, x)?, even if only as
a space—time distribution, and that in doing so we should exploit some decorrelation
properties of the dynamics.

11



So when dealing with the full solution u, we need a replacement for the Gaussian
computations used above. This will be provided, in the current setting, by stochastic cal-
culus along the time direction. Indeed, note that for each ¢ € .7 the process (X:(¢)):>0
is a semimartingale in the filtration (%% )¢>o0.

Before proceeding with these computations, we need to develop some tools to de-
scribe the It6 formula for functions of the Ornstein—-Uhlenbeck process. This will be also
serve us as an opportunity to set up some analysis on Gaussian spaces.

2.2 Gaussian computations

For cylindrical functions F : . — R of the form F(p) = f(p(®1),...,p(¢px)) with
@1,...,¢pn € L and f : R" — R at least Ci, we have by It6’s formula

dF(X) = Y F(XDAXilgn) + 5 D Fi (X)X (g0, X(p)),

i=1 i,j=1

where (); denotes the quadratic covariation of two continuous semimartingales and
where Fi(p) = dif(p(@1), ..., p(¢y)) and F; j(p) = 9?,jf(p((ﬂ1), .o, p(@y)), with 9; de-
noting the derivative with respect to the i-th argument. Now
d(X(@i), X(@j))t = AM(pi), M(@)))t = (D2 @i, OxPj)r2(mydt,
and then .
diF(X;) = Y Fi(X)dMi(gy) + LoF (Xp)dt,
i=1
where Ly is the second—order differential operator defined on cylindrical functions F as

n

o 1
LoF(p) = Zl Fi(p)p(Dgi) + ]Zl SFii(p)@xi, xpj)iam)- ©
Another way to describe the generator Ly is to give its value on the functions p
exp(p(¢)) for ¢ € ., which is

Loe?® = eP(p(ag) ~ 2 (1, APz,

If F, G are two cylindrical functions (which we can take of the form F(p) = f(p(@1), ..., p(@n))
and G(p) = g(p(@1), - .., p(@n)) for the same ¢4, ..., ¢, € .%), we can check that

Lo(FG) = (LoF)G + F(LoG) + &(F, G), 4)

where the quadratic form & is given by

E(F,G)(p) = D Fi(p)G(p)Oxpi, dxrmy- (5)
i

12
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.....

E[Zeg(Z)] = Z OB [ag(Z)]

Proof Use that E[e/(4M)] = e‘M'C’W2 and moreover that

E[Z ez(Z )\)] _ ( Z) E[ez(Z A)] ( )% —(A,CAY/2 _ Z(C/\) e —(A,CAY/2
k

. 4 9 .
=1 2} CrrkBle @) = 3 CoBlzz )

The relation is true for trigonometric functions and taking Fourier transforms we see
that it holds for all g € .7. Is then a matter of taking limits to show that we can extend
ittoany g € C;(RM). O

As a first application of this formula let us show that E[LoF(7)] = 0 for every cylin-

drical function, where n(¢) ~ N(O, ||¢ ||i2 T /2) is a space white noise. Indeed, note that

E[n(@)n(Ap))] = 3(@i, Apj)i2(r), leading to

n 1 n 1
E Zl EFi,j(nxaxﬁDi, A @j)iar) = —E Z:l EFi'j(n)<(Pi' AQ )2
1,]= i,j=

Z<(P11A(P]>L2(T)Ea( 3 Fi(n)
i,j=1

=- Z E[n(Ag)F(m)],
j=1
so that E[LoF(n)] = 0. In combination with [t6’s formula, this shows that the white noise
law is indeed a stationary distribution for X (check it!). From now on we fix the initial
distribution Xy ~ 1, which means that X; ~ n forall t > 0.
As another application of the Gaussian integration by parts formula, we get

1 1
SEIEE, G)n)] = —3 ZJ ELFi(G (K@i, Apj)iar-

_ _% D EIFEMGM)ilps, Apjdram
i
N % Z E[F(m)Gii(mMKpi, Ap;drzcr)
1]
= — S EFG ()n(Ap)] + % D BIFMGi) e, Apjdizr)
7 gl

= —E[(FLoG)()]-
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Combining this with (#) and with E[Lo(FG)(1)] = 0, we obtain E[(FLoG)(1)] = E[(GLoF)(1))].
That is, Lo is a symmetric operator with respect to the law of 7.

Consider now the operator D, defined on cylindrical functions F by
DF(p) = ) Fi(p)g: (6)
i

so that DF takes values in .’, the continuous linear functionals on .7.

Exercise 2 Show that D is independent of the specific representation of F, that is if

F(p) = f(p(®1), ., plen) = gp(Y1), ..., p(¥m))
forall p € .7, then

D2 0f(p(pr), -, pla)pi = Y 318 (p(01), -, PP ).
i j
Hint: One possible strategy is to show that for all 0 € .7,

(DF(p), 0) = =-F(p + cO)lez.

We have

E[F(n)(y, DG(n)] + E[G(n)¢, DE(n))] = Z E[(FG)i(nX, )] = 2E[n()EFG) ()],

and therefore
E[F(n)(y, DG(n))] = E[G(n){y, D'F(1n))]

with D*F(p) = ~DF(p)+2pF(p) being the adjoint of D for the scalar productin L?(law(1)).
Let Dy F = (¢, DF) and similarly for D’;}F = -DyF +2p(¥).

Exercise 3 Let (¢,),>1 be an orthonormal basis of L?(T). Show that

1 *
LO = E ; DEn DAE,, :

The commutator between Dg and Dtp is given by
[De, D, 1F(p) := (DeDjy, — Dy, Do)F(p) = 2(¢, O)r2¢m F(p),
whereas [D*e, D:u] = 0. Therefore,

* 1 % 3 1 * * 1 % *
[Lo,Dy]1= 5 ) [D%,Dae, Dyl = 5 3 D, [Dae, Dyl + 5 3 [D5,, Dy I,
n n

n

14



= ) D0, (¥, Aeu)iamy =D
n

So if ¢ is an eigenvector of A with eigenvalue A, then [Lo, D:b] = /\D’Zp. Let now (¢4 )nen

be an orthonormal eigenbasis for A with eigenvalues A, = A, and consider the func-
tions

Hiyy o) =R Hioo9)(0) = (D, -+ D), 1) (),
Then
LoH(Wiy, ..., i) = LOD’:PI,] X 'D:l/in 1=D; . LOD:[,I,2 e D’;}i”
==+ + A )HW@, -, i),

where we used that Lyl = 0. So these functions are eigenfunctions for Ly and the eigen-
values are all the possible combinations of A;, +---+ A;, for iy,...,i, € N. We have
immediately that for different n these functions are orthogonal in L2(law(n)). They are
actually orthogonal as soon as the indices i differ since in that case there is an index j
which is in one but not in the other and using the fact that D:D is adjoint to Dy, and

14,0y Dy 1 ()

that Dy,G = 0 if G does not depend on 1; we get the orthogonality. The functions
H(yi, ..., i,) are polynomials and they are called Wick polynomials.

Lemma 4 Forall Y € ., almost surely
(e"v1)(n) = 21 IWIP,

Proof If F is a cylindrical function of the form F(p) = f(p(¢1),..., p(@m)) with f €
Z(R™), then

E[F(n)(e™¥1)(n)] = B[P F(n)] = E[F(7 + )] = E[F(n)e21 @101,

where the second step follows from the fact that if we note W(n) = F(n + t{) we have
d:Wi(n) = DyWi(n) and Wo(n) = F(n) so that Wi(n) = (e'P¥F)(n) for all t > 0 and in
particular for £ = 1. The last step is simply a Gaussian change of variables. Indeed if we
take 1 = ¢ and @i Ly for k > 2 we have

E[F(n+ ) =E[f(n(y) + ¢, ), n(@2), ..., 1(@m))]

since (n+¢)(¢x) = n(@x) for k > 2. Now observe that () isindependent of (n(¢2), . .., N(¢m))
so that

—ZZ/IILPII2

B 7l |2

e WPE[f(z,n(p2), .., n(pu))] = E[F(n)e>” ¥ 1¥IF],

E[f(n(y) + ¢, ¥y, n(@2), ..., n(@m)] = +(U, ), n(@2), ..., n(Pm))]

oY1

R T[]

15



Theorem 1 The Wick polynomials {H(;,, ..., i )(n) : n > 0,i1,...,i, € N} form an
orthogonal basis of L*>(law(1)).

Proof Taking ¢ = }; 0;1; in Lemma[d] we get
((Dy)"1)(n)

A Tion Tl = (Pi1yp = 3 '
n:

n=0

_Z Z 011 . l”H(lel,~--,lPin)(77)r

n>01iq,..., in 1 times

which is enough to show that any random variable in L? can be expanded in a series
of Wick polynomials showing that the Wick polynomials are an orthogonal basis of
L%(law(n)) (but they are still not normalized). Indeed assume that Z € L?(law(n)) but
ZLIHi, ..., ¢ ) foralln >0,i,...,i, €N, then

0= eZiG?IIIPfIIZE[Z(eDLl)(n)] - eZiG?II%IIZE[ZEZZZ-Gm(l!!i)—ZiG,»zlllpillz] = B[Ze2Zioin)],

Since the o; are arbitrary, this means that Z is orthogonal to any polynomial in 1 and
then that it is orthogonal also to exp (i 3; 0in(¢;)). So let f € #(RM) and 0; = 0 for
i > m, and observe that

0= (2m)™/"? f doy -+~ douZ f(o1,...,0m)E[Ze' ZiMWI] = E[Z f(n(yn), ..., n(Ym))],

which means that Z is orthogonal to all the random variables in L? which are measurable
with respect to the o—field generated by (1(1,))n>0. This implies Z = 0. That is, Wick
polynomials form a basis for L2(law/(7)). O

Example 1 The first few (un—-normalized) Wick polynomials are
H(i)(p) = D}, 1= 2p($),
HWi, 9))(p) = Dy, D, 1= 2D}, p(iy) = 2610 + 4p()p(y),

and

H@i, ¢, i(p) = Dy, (=201 + 4p(¢j) p(i))
= —40j=kp(Vi) — 40i=jp(Pr) — 40i=kp(Y}) + 8p(Yi) p(P) p(Pk)-

Some other properties of Wick polynomials can be derived using the commutation

relation between D and D*. By linearity D’(‘P w=Dp+ D;, so that using the symmetry of

H we get

Hy(p+Vy)=H(p+¢Y,...,p+1¢) = Z (Z)H((p,...,(p,gb,...,l,b).

M 0<k<n X ek
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Then note that by Lemma {4{ we have
(€20 1) () (e v 1)(n) = NP3l n)=5IYIE = pnlp+d)=zllo+ylP+2(p1)
= (e 1) ()2 e,
Expanding the exponentials,
P q
¢ —— —— t
3" Hul@) Hulw) _ 5 il + ) (e v _ 3 @b p) (z¢e, 9))

m! n! r! £! Ig! £
m,n r,f p.q,¢ P-4

and identifying the terms of the same homogeneity in ¢ and 1 respectively we get

q

p
o= 3 Y MM he o D (iew) . ®

Igle!
p+l=m q+{=n P-4

This gives a general formula for such products. By polarization of this multilinear form,
we can also get a general formula for the products of general Wick polynomials. Indeed
taking ¢ = Z?il ki@ and ¢ = 2}1:1 Ajy; for arbitrary real coefficients «1, ..., x, and
A1, ..., A, we have

Hu () kipHa (D Ajt))
i=1 j=1
= Z Z Kil"'Kim/\jl"'A]},,H((Plr---z(Pm)H(I,bjlz---/l,ij)-

Deriving this with respect to all the x, A parameters and setting them to zero, we single
out the term

Z H((Po(l)/ ceey (Po(m))H(Ebw(l)/ ey #Jw(n)) = m!n!H((pl, ce ,@m)H(¢1, ey I’Dn),

0€S,,;,weS,

where Si denotes the symmetric group on {1, ..., k}, and where we used the symmetry
of the Wick polynomials. Doing the same also for the right hand side of (8) we get

H(pi, ..., om)HW1, ..., ¥n)
p q ¢

= Z Z —p!qw!ZH((Pil,---,@ip,¢j1,...,¢jq)l_[<§0ip+,,¢jq+r>,
p+t=m q+{=n ij =1

where the sum over i, j runs over iy, ..., i, permutation of 1,...,n and similarly for
ji,--., jm- In particular, we obtain

BIHW, - YHWy el = — 3 [ @050 = 3 [ [ o).

i,j r=1 o€S, r=1
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Remark 1 In our problem it will be convenient to take the Fourier basis as basis in the
above computations. Let ex(x) = exp(ikx)/V2m = ar(x) + iby(x) where (\/Eak)keN and
(\/Ebk) - form together a real valued orthonormal basis for L?(T). Then p(ex)* = p(e—_k)
whenever p is real valued, and we will denote Dy = D,, = D,, + iDj, and similarly for
D} =Dj, —iD; = —-D_i+2p(e—x). In this way, D; is the adjoint of Dy with respect to the
Hermitian scalar product on L2(Q2; C) and the Ornstein-Uhlenbeck generator takes the
form

1 .
Lo =5 ) (D5, Do, + D5, Doryy) ZkzD Dy )
keN keZ
and
E(F,G) = Z k2(DF)'(DiG). (10)
keZ

2.3 The It6 trick

We are ready now to start our computations. Recall that we want to analyse J;(¢) =

fot d:X2(¢p)ds using It calculus with respect to the Ornstein-Uhlenbeck process. We
want to understand J; as a correction term in It6’s formula, so we have to find a function
F such that LoF(X;) = QXth. Of course, F will not be a cylindrical function but we
only defined Ly on cylindrical functions. So to make the following calculations rigorous
we would again have to replace 8xXt2 by BXH,ZXt2 and then pass to the limit, see the
paper [GJ13] for details. As before we will perform the calculations already in the limit
N = 4090, in order to simplify the computations and not to obscure the ideas through
technicalities.

Note that

9 XHe) =ik Y Xie)Xi(ew) =ik ) Hem(Xy),

+m=k +m=k

where Hy ,,(p) = }L(D*_KD*_ml)(p) = plee)plem) — %6“”1:0 is a second order Hermite
polynomial so that LoHy,;, = —(6% + m?)Hy by @ Therefore, it is enough to take

F(Xi)(er) = —ik ) —#—
{+m=k
This corresponds to the distribution F(X;)(¢) = — fooo dx(e%2X;)*(p)ds (check it!). Then
F(Xe)(p) = F(Xo)(@) + Mpi(@) + Ji(p),

where Mr (@) is a martingale with quadratic variation

A(ME«(@), ME«(@))r = E(F(+)(), F(+)(¢))(Xr)dt.

(11)

We can estimate

EllJi(9) = Js(@)I*] $p E[IMEi(@) = Mrs(@)/*] + E[IF(X)(@) = F(Xs) (@)1 ].

To bound the martingale expectation, we will use the following Burkholder inequality:

18



Lemma 5 Let m be a continuous local martingale with mo = 0. Then forall T > Oand p > 1,

E[sup |m;[*] < CPE[(MY;].
t<T

Proof Start by assuming that m and (m) are bounded. Itd’s formula yields
_ 1 _
dlmi | = 2p)lm: P~ dm; + 5(2p)2p - DmP=2d(m);,

and therefore
T
E[|mr|*] = C,E [f Imslz”_zd(fms] < C,E[sup |m|*P~2(m)r].
0 t<T

By Cauchy-Schwartz we get

E[|mr[*] < CpE[sup [m;|* ]~/ E[(m) V7.
t<T
But now Doob’s L7 inequality yields E[sup, |m¢|?P] < C;,E[|mT|2P ], and this implies
the claim in the bounded case. The unbounded case can be treated with a localization
argument. O

Applying Burkholder’s inequality, we obtain

p

t
E(EE(@), F)@)(Xp)dr| | +E[IF(X) (@) = F(Xs)(@)*]

EllJi(p) = (@)1 sp E

t
<(t— sy f E[IE(F()(p), F(:)(@))(X,)P]dr
+BIF(X)(9) — F(Xo)(@)P?]
= (t - sYE[IEE@)@), EE@)MIP] + EIF(XD(@) - EX)@)P],
using that X, ~ 1. Now

p(eksm)
(k +m)? + (—-m)?’

D, F(p)(ex) = —2ik
and therefore

E(F(+)(ex), F(+)(ex))(p) = Z m*D_F(p)(e-x)DwmF(p)(ex)

2 2
:4k2 Z mz |p(65)| <k2 |‘D(€g)|

(2+m2)2 =" & L2+ m?

(+m=k

which implies that

2
E[IE(EC)er), FE)eo) ] s KB Z el < Y sk
t

+m=k
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A similar computation gives also that

E[IEF()(ex), FC)e))mIP] < [kP.

Further, we have

E[|F(Xo)(ex) - F(Xs)elP] sk ) B

2 2)2
{+m=k (f +m )

2
m
< K2t — 5| Z Ty S k|t — .

{+m=k

[(Hf,m(Xt) - H[,m(Xs))z

And finally, this computation lets us recover the result that

EllJi(ex) = Js(e)l] sp (t = )P |kIP.

The advantage of the Itd trick with respect to the explicit Gaussian computation is
that it goes over to the non—Gaussian case. Indeed note that while the boundary term
F(X¢)(@) — F(X;s)(¢) has been estimated using a lot of the Gaussian information about

X, we used only the law at a fixed time to handle the term fs t E(E(#) (@), F(*)(@))(X;)dr.

In order to carry over these computation to the full process u solution of the non-
linear dynamics we need to replace the generator of X with that of # and to have a way
to handle the boundary terms. The idea is now to reverse the Markov process u in time,
which will allow us to kill the antisymmetric part of the generator and at the same time
kill the boundary terms. Indeed observe that if u solves the stochastic Burgers equation,
then formally we have the It6 formula

diF(ur) = > Fi(ur)dMi(py) + LE(u)dt,
i=1

where L is now the full generator of the non-linear dynamics, given by

LF(p) = LoF(p) + Z Fi(p)dxp% @) = LoF(p) + BE(p),

where

BF(p) = ) (9:p*)(e)DkF(p).
k

Formally, the non-linear term is antisymmetric with respect to the invariant measure of
Lo. Indeed since B is a first order operator

E[(BE(m)G(n)] = E[(B(FG)(m)] = E[F(m)(BG(n))] = —E[F(m(BG()]  (12)
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provided E[BF(7)] = 0 for any cylinder function F. Let us show this.
E[BF(n)] = )" E[(9xn®)(ex) DkF()]
k

= > EIDk@en®)ee)F()] + D EIDE[(xn®)(er) F()]]
k k
But now, using that e;ex = 1/(27) and that (1, 1) we have

) ) . 2ik
Di(9x1*)(ex) = 2(x(nex), ex) = —2ik(nex, exy = =2ik(n, e;ex) = —ﬁm, 1)=0

and using the Gaussian integration by parts

E[BF(n)] = ZE Dil@x1)(e)F(]] = ZE[n(ekxaan)(ek)F(n)]

= [0, AP = ~ 3B, ) F()] = 0

since —(1,d,1%) = (91,1 = 0.

The dynamics of u backwards in time has a Markovian description which is the sub-
ject of the next exercise.

Exercise 4 Let (1;)¢»0 be a stationary Markov process on a Polish space, with semigroup (P;)s»o0
and stationary distribution u. Show that if P; is the adjoint of P; in L?(), then (P}) is a semigroup
of operators on L% ) (thatis Py = id and P;_, = P;P; as operators on L%( u)). Show thatif yo ~ p,
then for all T > 0 the process §; = yr-¢, t € [0, T], is also Markov, with semigroup (P})c[o, 7,
and that u is also an invariant distribution for (P;). Show also that if (P;) has generator L then
(P}) has generator L* which is the adjoint of L w1th respect to L2(p).

Now if we reverse the process in time letting #i; = ur_;, we have by stationarity

E[F(2:)G(it0)] = E[F(ur-1)G(ut)] = E[F(10)G(us)].
So if we denote by L the generator of 7:

d

BILF(20G ()] = |

E[F(ﬁt)G(ﬁo)] = g7 ElFo)G(up] = E[LG(uo)F(uo)l,

t=0

which means that L is the adjoint of L, that is

LF(p) = LoF(p) - BF(p) = LoF(p) = ) (dp*)(er) DkF(p).
k

Then It6’s formula for the reversed process gives

diF(i) = Y Fi(ti)dNi(py) + LE(ip)dt,
i=1
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where for all test functions ¢, the process M(¢) is a martingale in the filtration of # with
covariance

d(M((P), M(‘J’))t = <ax§0/ ax‘P)LZ(T)dt'

Combining the It6 formulas for u and 7, we get

T
F(ur)(@) = Fluo)(@) + Mex(g) + fo LF(us)(g)ds

and

T
F(u0)(@) = F(iir)(@) = F(o)(g) + M (g) + fo LF(i)(g)ds

A T A
— F(ur)(@) + Mex(g) + fo LF(us)(g)ds,

and summing up these two equalities gives

T
0 = Mer(p) + Mer(p) + fo (L + L)E(us)()ds,

that is .
2[ LoF(us)(p)ds = =Mpr(p) — Mer().
0

An added benefit of this forward-backward representation is that only term which re-
quired quite a lot of informations about X, that is the boundary term F(X;)(¢)—F(X;)(¢)
does not appear at all now. As above if 2LoF(p) = dy pz, we end up with

T
fo 312()ds = ~Mp1(@) - Mer(g). (13)

Exercise 5 Perform a similar formal calculation as in to see that E[LF(n)] = 0 for all cylin-
drical functions F, so that 7 is also invariant for the stochastic Burgers equation. Combine this

with to show that setting NtN (p) = fot dx(TIyus)?*(p)ds we have
E[IN] (ex) = N (en) ] <p (£ = s)P kI
and letting NtN M- NN — NM we get
B[N, (er) = N M (@) ] sp (KI/NYP (¢ = s) [k]?
forall 1 < N < M. Use this to derive that
BN = A MIELDY <0 NTP(E=5)!12

for all &« < —1 - ¢, and realize that this estimate allows you to prove compactness of the approx-
imations AN and then convergence to a limit AV in L% (Q; CV/2~H~1").
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2.4 Controlled distributions

Let us cook up a definition which will allow us to rigorously perform the formal com-
putations above in a general setting.

Definition 2 Let u, A : Ry X T — R be a couple of generalized process such that

i. Forall @ € /(T) the process t — u(@) is a continuous semimartingale satisfying

t
() = to(g) + fo us(A@)ds + Ar() + Mi(g),

where t = M;(¢) is a martingale with quadratic variation (M;(¢), Mi({)) = (dx@, dx ) 12T
and t — A(@) is a finite variation process with Ay = 0.

ii. Forall t > O the random distribution ¢ w— u;(@) is a zero mean space white noise with
variance ||(p||i2 /2.
0

iii. Forany T > 0 the reversed process iy = ur—; has again properties i, ii with martingale M
and finite variation part A such that A;(@) = —(Ar(p) — Ar—t(@)).

Any pair of processes (u, A) satisfying these condition will be called controlled by the Ornstein—
Uhlenbeck process and we will denote the set of all such processes with Qoy.

Theorem 2 Assume that (u, A) € Qo and forany N >1,t >0, ¢ € .7 let

t
NY) = [ auim s

Then forany p > 1 (NN)ns1 converges in probability to a space~time distribution N € CY2~H=1-,
We are now at a point were we can give a meaning to our original equation.
Definition 3 A pair of random distribution (u, A) € Qo is an energy solution to the stochas-

tic Burgers equation if it satisfies

t
() = () + fo us(A@)ds + No(@) + Mi(9)

forallt > 0and ¢ € .. Thatisif A= N.

Now we are in a relatively standard setting of needing to prove existence and unique-

ness of such energy solutions. Note that in general the solutions are pairs of processes
(u, A).

Remark 2 The notion of energy solution has been introduced (in a slightly different

way) in the work of Gongalves and Jara [GJ10] on macroscopic universal fluctuations of
weakly asymmetric interacting particle systems.
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2.5 Existence of solutions

For the existence the way to proceed is quite standard. We approximate the equation,
construct approximate solutions and then try to have enough compactness to have lim-
iting points which then naturally will satisfy the requirements for energy solutions. For
any N > 1 consider solutions u" to

ruN = AuN + 9 TIn(TInuN)? + 9, &
These are generalized functions such that
dul (ex) = —k*ulN (e )dt + [OxTIn (TInu™ )] (ex)dt + ikdBi(k)

fork € Zand t > 0. We take 1 to be the white noise with covariance u;(¢) ~ N(0, [|p|?/2).
The point of our choice of the non-linearity is that this (infinite—dimensional) system of
equations decomposes into a finite dimensional system for (o™ (k) = TInu™ (ex))k ki<
and an infinite number of one-dimensional equations for each u™(e) with |k| > N.
Indeed if [k| > N we have [0, TIn(TInuN)?](ex) = 0 so us(ex) = X;(ex) the Ornstein—
Uhlenbeck process with initial condition Xy = up which renders it stationary in time
(check it). The equation for (0N (k))j<n reads

doN (k) = —=k*oN(k)dt + br(oN)dt + ikdp(k), k| <N,t >0

where
bk(vf’) =ik Z H|€|,|k|,|m|<Nv£\](£)v£\](m)'

t+m=k

This is a standard finite—~dimensional ODE having global solutions for all initial condi-
tions which gives rise to a nice Markov process. The fact that solutions do not blow up
even if the interaction is quadratic can be seen by computing the evolution of the norm

A=) NP

k|<N

and by showing that

dA; =2 Z oN(=k)doN(-k) = —2k?A,dt+2 Z oN(=k)br(vN)dt+21k Z oN(=k)dB; (k).
k|<N k|<N k|<N

But now

Do =obN) =20 > T menkolN (0o (m)o) (<k)
|k|<N k,€,m:0+m=k

==20 > T mien oy (0o m)ol (k)
k,€,m:l+m+k=0
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and by symmetry of this expression it is equal to

2
=3t > Tammen(k+ €+ myoy Qo) (myo (k) =0,

k, €, m:€+m+k=0

so Ay = Ag + M; where dM; =2 ZlleN H|k|<N(lk)U?l(—k)dﬁt(k) Now

T T
E[M%]sfo > kzlvtN(k)lzdtssz0 Apdt

KI<N
and then by martingales inequalities

E[ sup (Ar)?] < 2E[A3] + 2E[ sup (M;)?] < 2E[AZ] + 2E[M?]
te[0,T] te[0,T]

T
< 2E[A3] + CN? f E(A;)dt.
0

Now Gronwall’s inequality gives

E[ sup (A;)?] < e“N'TE[A2],
te[0,T]

from where we can deduce (by a continuation argument) that almost surely there is no
blowup at finite time for the dynamics. From the Galerkin approximations the It6 trick
will provide enough compactness in order to pass to the limit and build an energy so-
lution to the Stochastic Burgers equation; see [RVWO01] for details on how to implement
the It trick on the level of diffusions.

3 Distributions and Besov spaces

Here we collect some classical results from harmonic analysis which we will need in the
following. We concentrate on distributions and SPDEs on the torus, but everything in
this Section applies mutatis mutandis on the full space R?, see [GIP13]. The only prob-
lem is that then the stochastic terms will no longer be in the Besov spaces ¢* which
we encounter below but rather in weighted Besov spaces. Handling SPDEs in weighted
function spaces is more delicate and we prefer here to concentrate to the simpler situa-
tion of the torus.
The space of distributions . = . ’(T%) is the set of linear maps f from . = C (T4, C)

to C, such that there exist k € N and C > 0 with

IKf, @) = 1f(@)| < Csup [|0" |l ey
lul<k

forall p € .7.
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Example 2 Clearly L7 = LP(T) c .#” forall p > 1, and more generally the space of finite
signed measures on (T%, (T%)) is contained in .#”. Another example of a distribution
is @ - JHp(x) for u € Ng and x € T.

In particular, the Fourier transform .% f : 7% - C,

Ffk)= f(k) = (f, ex)

with e = e7®)/(2r)4/2 is defined for all f € .77, and it satisfies |.Z f (k)| < |P(k)| for a
suitable polynomial P. Conversely, if (g(k))iez¢ is at most of polynomial growth, then
its inverse Fourier transform

7= gk

kezd
defines a distribution.

Exercise 6 Show that the Fourier transform of ¢ € . decays faster than any rational function
(we say that it is of rapid decay). Combine this with the fact that .# defines a bijection from L?(T*)
to £2(2%) with inverse .# ! to show that # 1.7 f = f forall f € " and #.F g = g for all g of
polynomial growth. Extend the Parseval formula

(fphzan = [ Fgds = Y Fgtey
k

from f,p € LX(T%)to f € /" and ¢ € .¥.

Exercise 7 Fix a complete probability space (Q, 7,P). On that space let & be a spatial white
noise on T, i.e. & is a centered Gaussian process indexed by L?(T¢), with covariance

E[E(H)E(9)] = fT Fgds.

Show that there exists £ with P(£(f) = &(f)) = 1 forall f € L?, such that &(w) € .7’ forall w € Q.
Hint: Show that E[Y ez« exp(A||E(ex)]|?)/(1 + [k]**1)] < oo for some suitable A > 0.

Linear maps on .’ can be defined by duality: if A : ./ — . issuch thatforallk € N
there exists n € Nand C > 0 with sup; ., 19" (A@)ll> < Csup,,, [|9#¢|l.~, then we

set ({Af, ) = (f, Ap). Differential operators are defined by (3" f, ) = (-1)I#I( f, 9 p).
If ¢ : Z¢ — C grows at most polynomially, then it defines a Fourier multiplier

¢D): " >, @D)f =F pFf).

Exercise 8 Use the Fourier inversion formula of Exercise[f]to show that for f € .7, ¢ € . and
for u,v : Z¢ — C with u of polynomial growth and v of rapid decay

F(fp)k) =@ 2 fle-0p(t) and  F7(wo)(x) = @) (F 7w, F o (x - ).
t
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We will now use Littlewood-Paley blocks to obtain a decomposition of distributions
into an infinite series of smooth functions. Of course, we have already such a decomposi-
tion at our disposal: f = X f (k)ez. But it turns out to be convenient not to consider each
Fourier coefficient separately, but to work with projections on dyadic Fourier blocks.

Definition 4 A dyadic partition of unity consists of two nonnegative radial functions x,p €
C®(R%,R), where p is supported in a ball 8 = {|x| < c} and p is supported in an annulus
o/ ={a < |x| < b} for suitable a, b, c > 0, such that

1 x+Xjs0pQ7:)=1and

2. supp(x) Nsupp(p(277-)) = 0 for j > 1 and supp(p(2~'-)) N supp(p(27/-)) = 0 for all
i >0withli-j| > 1.

We will often write p_1 = x and pj = p(271-) for j > 0.

Dyadic partitions of unity exist, see [BCD11]. The reason for considering smooth
partitions rather than indicator functions is that indicator functions do not have good
Fourier multiplier properties. For example we only have ||Ij5 5j+1)(IDD flle < Il fll,
whereas ||p;j(D)f|lr= < || f||lz~ uniformly in j. From now on we fix a dyadic partition of
unity (x, p) and define the dyadic blocks

Aif =piD)f =FNpif), j>-1

We also use the notation

Sif= ), Aif

i<j—1

as well as K; = 2n)™4/2.7~1p; so that
Kixf=7"(p;7f) = Aif.

Every dyadic block has a compactly supported Fourier transform and is therefore in .7
Itis easy tosee that f =3 ;> 1 Ajf =limje Sjf forall f € 7.

For @ € R, the Holder-Besov space ¢ is given by ¢ = Bg‘o,m(Td,R), where for
p,q € [1, 00] we define

’ j /g
By, =By (TTR) = {f e :|fllss, = ( D @A fllr)) " < oo},
j>-1

with the usual interpretation as £{* norm if g = co. Then B | is a Banach space and while
the norm [|-[|p¢, depends on (X, p), the space By , does not and any other dyadic partition
of unity corresponds to an equivalent norm (this follows from Lemma [10]below). We
write |||, instead of Illlsg, .-

Exercise 9 Let &y denote the Dirac delta in 0. Show that 6y € €.
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If @« € (0,00) \ N, then ¢ is the space of | a] times differentiable functions whose
partial derivatives of order | «| are (a—| a])-Holder continuous (see page 99 of [BCD11]).
Note however, that for k € N the space €* is strictly larger than C¥, the space of k times
continuously differentiable functions. Below we will give the proof for @ € (0,1), but
before we still need some tools.

Lemma 6 (Poisson summation) Let ¢ : RY — C be a Schwartz function. Then

Flo()= Y Fale(x+2mk),

kezd
for all x € T4, where F 1 p(x) = )2 [L, p(y)e’™¥dy.

Proof Let g(x) = Xyeza Iy lo(x + 27mtk). The function % (p is of rapid decay since

@ € . so the sum converges absolutely and defines a contmuous function ¢ : R — R
which is periodic of period 27 in every direction. The Fourier transform over the torus
T of this function is

— —ix,y) i(x+2mk,y)
Fs)= [ s = [ 3 At anbe et S

kezd

since e~?™k¥) = 1. By dominated convergence the sum and the integral can be com-

bined in a overall integration over R:

' dx
_ -1 —i{x,y) _ -1 _
Fgy) = fRd Frea Plx)e™ Y o FraF g P(y) = @(y)

so we deduce that ¢(x) = .7 1o(x). O

Exercise 10 Show that |||l < [|*|ls for a < B, that ||"[lL~ < |||l for @ > 0, that |||l < [|-[lL~ for
@ < 0,and that [[S; - ||~ < 2i%|| - ||o for & < 0.
Hint: When proving ||-|l < ||/l for a < 0, you might need Poisson’s summation formula.

The following Bernstein inequality is extremely useful when dealing with functions
with compactly supported Fourier transform.

Lemma 7 (Bernstein inequality) Let 8 be a ball and k € No. Forany A > 1,1 <p < q < oo,
and f € LV with supp(Z f) € A% we have

1_1
max 0% fllr <z XG0 1l
peN:|ul=k

Proof Let 1) be a compactly supported C* function on R? such that ¥ = 1 on % and
write ¥, (x) = P(A71x). Then

Hf(x) =" F (YA T f)(x) = Q)2 {f, " (Z 1)) (x - )
= )2 (f " (F 1)) (x).
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By Young’s inequality, we get
19 flls < 11 fller (|l0% (F~ a)

where 1+1/q =1/p +1/r. Now it is a simple exercise to verify || - ||.r <
and

||a#(9-1¢A)||L1=j;d ‘zk:a# (Z2iwa) (x +2mk) dx<f |04 (7o) ()] dx

:/\“*'f A |(9# o tp) (Ax)| dx = Al
R4

Lrl
1 1-1
(R

whereas
sup | Z (T pa)(x +2mk)| = AMH sup | Z(aﬂ AP +27)|
xeTd xeTd
< A gup Z(l + Alx + 27tk[)
xeTd g
< AT sup 3" (1+ |x + 2mk]) 2 g A%,
xeTd g
We end up with

N0 fllea < 11 flle ||3u (gz—llm) S ||f||L,,,\Iyl/m(d+lul>(1—1/r) - ||f||LM|ul+d(1/p—1/q)‘

O

It then follows immediately that for « € R, f € €%, u € N4, we have ¥ fe gl
Another simple application of the Bernstein inequalities is the Besov embedding theo-
rem, the proof of which we leave as an exercise.

Lemma 8 (Besov embedding) Let 1 < p1 < pp < 0and1 < q1 < g2 < o0, and let a € R.
a—d(1/p1— 1/p2)

Then By, ., is continuously embedded into By, ,,

pP1.q1

Exercise 11 In the setting of Exercise|7| use Besov embedding to show that E[||€ ||f J /2—5] < oo for
allp >1and ¢ > 0 (in partlcular & € €792~ almost surely).
Hint: Estimate E[||& || o ] using Gaussian hypercontractivity (equivalence of moments).
2p,2p

As another application of the Bernstein inequality, let us show that €% = C“ for
a € (0,1).

Lemma 9 For a € (0,1) we have € = C?, the space of a-Hélder continuous functions, and

b [f () = f(y)

~ a = e +
1l = Ml fllce =11 £1lc ey Ara(x, y)°

7

where dya(x, y) denotes the canonical distance on T4,
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Proof Start by noting that for f € € we have || f|lL> < 2; [|Ajfll= < ij—fa”f”a <
| flla- Let now x # y € T? and choose jy with 2770 ~
Bernstein’s inequality to obtain

dra(x,y). For j < jo we use

1A f(x) = A f()]| S IIDA; flle=dr(x, y) < 2[|A; flli=dr(x, y) < 27| f|lodr(x, v),

whereas for j > jo we simply estimate

A f () = A I 1A flls < 274 fla-
Summing over j, we get
) = FI < D 270D flladn(e, y) + Y 27 fllo
j<jo j>Jo
= || flla @V dr(x, y) +270%) = || flladpa(x, y)°*.

Conversely, if f € C“, then we estimate [|[A_1 f[~ < ||f]lc=. For j > 0, the function p;
satisfies f pjdx =0, and therefore

8 F )] = | fT T i = () - )|
=] [ Dy Fadpite -y 2m ) - ey

k

= fd Fipilx = (f(y) - f()dy|

R

Now |f(y) = f(] < | fllcadz(x, y)* < [ fllcs x - yI¢, and thus we end up with

1A £l < [l fllce < I fllca277,

i fR N(#2te) @ = )| ke = yi*dy

O

The following lemma, a characterization of Besov regularity for functions that can be
decomposed into pieces which are localized in Fourier space, will be immensely useful
in what follows.

Lemma 10

1. Let o/ be an annulus, let a € R, and let (uj) be a sequence of smooth functions such that
Fuj has its support in 21 .o/, and such that ||uj||L~ < 27/ for all j. Then

u= Z ujee" and |ula < sup{2f“||uj||Loo}.

j>-1 j>-1
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2. Let % be a ball, let oo > 0, and let (u) be a sequence of smooth functions such that Fu; has
its support in 219, and such that ||uj||p~ < 27/ for all j. Then

u= Z uj € ¢” and |ula S sup{21“||uj||Loo}.

j=-1 jz-1

Proof If Zuj is supported in 2/.7, then Aju; # 0 only for i ~ j. Hence, we obtain

Al < 7 Al < sup {25 Jugllis D27 = sup {25l Y27
jij~i k>-1 jij~i k>-1

If Z#u;is supported in 2/ A, then Aju j # 0only for i < j. Therefore,
lA;u]|Le < Z Al < sup{25*|Jugllie} Z 277% < sup {259 ||u|lp- Y270,
jijzi k>-1 jiizi k>t
using o > 0 in the last step. |

When solving SPDEs, we will need the smoothing properties of the heat semigroup.
For that purpose we study functions of time with values in distribution spaces. If X is a
Banach space with norm || - ||x and if T > 0, then we define CX and CrX as the spaces
of continuous functions from [0, c0) respectively [0, T] to X, and CrX is equipped with

the supremum norm || - ||c;x. If @ € (0,1) then we write C*X for the functions in CX
that are a—Holder continuous on every interval [0, T], and we write
lees— sup MO=FO
™ ocs<esr  |E—sl

We then define £% = C£*NC*2L> for a € (0,2). For T > 0 we set Zr = CT%O‘HC%/ZL‘X’
and we equip £} with the norm

I g = ma{ - llegee, I+ lemy

The notation .#’* is chosen to be reminiscent of the operator .’ = d; — A and indeed the
parabolic spaces £ are adapted to .Z in the sense that the temporal regularity “counts
twice”, which is due to the fact that .Z contains a first order temporal but a second
order spatial derivative. If we would replace A by a fractional Laplacian —(—A)?, then
we would have to consider the space C&* N C%/C9)L* instead of .2*.

We have the following Schauder estimate on the scale of (.£%),, spaces:

Lemma 11 Let a € (0,2) and let (P);s0 be the semigroup generated by the periodic Laplacian,
F(Pef)(k) = e‘”k'zﬁf(k). For f € C€%2 define | f(t) = fot Pi_s fsds. Then

1 fllze < A+ Dl fllcrge
forallT > 0.Ifu € €%, thent — Pyu € % and

It Praelle < llula.

31



Bibliographic notes For a gentle introduction to Littlewood-Paley theory and Besov
spaces see the recent monograph [BCD11], where most of our results are taken from.
There the case of tempered distributions on R? is considered. The theory on the torus
is developed in [ST87]. The Schauder estimates for the heat semigroup are classical and
can be found in [GIP13] (GP14].

4 Diffusion in a random environment

Let us consider the following d-dimensional homogenization problem. Fix ¢ > 0 and
let u¢ : R, X T? — R be the solution to the Cauchy problem

dut(t,x)=Au(t,x)+ e *V(x/e)u(t, x), u®(0) = uy,

where V : TY — R is a random field defined on the rescaled torus T¢ = (R/(2me~1Z))%.
This model describes the diffusion of particles in a random medium (replacing d; by
id; gives the Schrodinger equation of a quantum particle evolving in a random poten-
tial). For a review of related results the reader can give a look at the recent paper of
Bal and Gu [BG13]. The limit ¢ — 0 corresponds to looking at the large scale behav-
ior of the model since it can be understood as the equation for the macroscopic density
ué(t,x) = u(t/e?,x/e) which corresponds to a microscopic density u : R, x T9 — R
evolving according to the parabolic equation

du(t,x) = Au(t, x) + e *V(x)u(t, x), u®@0,-) = ug(e-).

We assume that V : T? — R is Gaussian and has mean zero and homogeneous correla-
tion function C, given by

Celx = y) = E[V()V(y)] = (e/V2m)* )" > ¥HR(k)

keeZg

where Z8 = Z\{0}. On R : R? - R, we make the following hypothesis: for some
B € (0,d] we have R(k) = |k|f~?R(k) where R € .#(R?) is a smooth radial function of
rapid decay. For § < d it would be equivalent to require that spatial correlations (in the
limit ¢ — 0) decay as |x|™F. For g = d this hypothesis means that spatial correlations are
of rapid decay. Indeed by dominated convergence

: _ [ 9k ibree - f dk  ikypp-d B
gg%cg(x)_fw Gyt RO = | e IR ()

= )2 (71 1)+ 71 (R)) ().

Now g“ﬁgj(ﬁ) e .Z(R%) and 3‘%}“ -|B=?)(x) =~ |x|7P if 0 < B < d (see for example Propo-

sition 1.29 of [BCD11])), so lim,_ [C¢(x)| < |x|7F for |x| — +o0.
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Let us write V.(x) = ¢e7*V(x/¢) so that d;u® = Au® + V.u®, and let us compute the
variance of the Littlewood-Paley blocks of V.

In order to perform more easily some computations we can introduce a family of
centered complex Gaussian random variables {g(k)}ke.z, such that g(k)* = g(—k) and
E[g(k)g(k")] = Ok+k'=0 and represent V. (x) as

gll2-a i(x k/e)
Ve(x) = W Z e R (k) g (k)
keeZg

Lemma 12 Assume  —2a > 0.We have for any ¢ > 0and i > 0and any 0 < k <  —2a:
E[|Ang(x)|2] < 2(20{+K)i€1<.

This estimate implies that if B > 2a, there exists k > 0 with Ve — 0 in L*(C}; B, ‘;_K/ 2(T4)) as
e —=0.

Proof A spectral computation gives

6d/2—0c ok
AVeR) = = D e pik R )

~7d
keezZ

S0
E[|Ai Ve (x)]

e (VI e 2 pilk /el HIOR(K)
(VI 425 5o p(k/(2)PR(K) (14)

< gd-2apid SUPy ¢ 0i oy R(K),

where < is the annulus in which p is supported. Now if £2/ < 1wehave E[|A; V. (x)|*] <
id gd=2a(gpi)f~d = ¢f-202if The assumption f — 2a > 0 then implies E[|A; V. (x)]?] <
2Ca+iex for any 0 < k < B —2a. In the case €2/ > 1 we use that fB(o 1y R(k)dk < +o0 to
estimate '

et 7 plk/(e2)*R(K) 5 & > R(ek) < f R(k)dk < +oo,

keezd kezd R
and then E[|A;V,(x)]?] < e72% < 22%(£21)* for any small x > 0. O

Note that the computation carried out in equation implies also that if f —2a < 0,
then essentially V. does not converge in any reasonable sense since the variance of the
Littlewood-Paley blocks explodes.

Remark 3 The same calculation as in (14) shows that
E[AiVs(x)AjVé'(x)] =0

whenever |i — j| > 1, because in that case p;p; = 0.
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The previous analysis shows that it is reasonable to take a < /2 in order to have
some hope of obtaining a well defined limit as ¢ — 0. In this case V, stays bounded
(at least) in spaces of distributions of regularity a—. This brings us to the problem of
obtaining estimates for the parabolic PDE

Lut(t,x) = (9 — Nus(t,x) = Ve(x)u(t, x), (t,x) € [0, T] % T,

depending only on negative regularity norms of V.. On one side the regularity of u¢ is
then limited by the regularity of the right hand side which cannot be better than that
of V.. On the other side the product of V. with u, can cause problems since we try to
multiply an (a priori) irregular object with one of limited regularity.

Assume that V, € €72 with y > 0. It is then reasonable to assume that also V. u® €
Cr%7~2 and that u¢ € Cr%7 as a consequence of the regularising effect of the heat
operator (Lemma[I1). We will see in Section 5.1 below that the product V,u¢ is under
control only if y +y —2 > 0, that is if y > 1. Since V., — 0in ¥~!*, it is not difficult to
show that u® converges as ¢ — 0 to the solution u of the linear equation .Zu = 0. In this
case the random potential will not have any effect in the limit.

The interesting situation then is when y < 1. To understand what could happen in
this case let us use a simple transformation of the solution. Write u¢ = exp(X®)v® where
X¢ satisfies the equation .ZX¢ = V¢ with initial condition X*(0, -) = 0. Then

Luf =exp(X®) (v LX + Lov* - V(9 XE)? = 2(02 XE, 9405 )ga) = exp(XE)vE V.
Since exp(X®) > 0on [0, T] X T4, this implies that v¢ satisfies
L0 — 08|09 X = 2(0:XE, 00 )ga =0,  (t,x) €[0,T] x T

Our Schauder estimates imply that X¢ € Cr%¢” with uniform bounds in ¢ > 0, so that
the problematic term is |0, X¢|? for which this estimate does not guarantee existence.

Note that
d/2—a

€
0x Xe(t, x) = W

D MGt k)g (k) (15)
keeZg
with

k1 - et
Gé(t, k) = ZEWVR(I{)

Lemma 13 Assume that

0% = (VZT()df &f)dk < too.
R4 k
Thenif a« =1 and t > 0 we have

lirr(l)E[laxXSIQ(t,X)] =d?,
E—
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andifa <landt >0
lirr(gE[(laxXgl)z(t, x)] = 0.

Moreover
Var[Aq(|8xX€|2)(t, x)] < g min(a4, (eZq)ﬁ_zllﬁllmaz).

Proof A computation similar to that leading to equation (14) gives

E[|0:X¢2(t, x)] = e (V2m)?e 2 Z |k/€|2[fte‘(t‘sﬂk/g'zds]zR(k)

keezd 0
= ed(V2m)t g2 20 Z [1- e;(k/g)z]_zR(k),
keeZd
which for ¢ = 0 and ¢t > 0 tends to
i B2, X, 0] = Lo VB [ Sk =Toa?

Let us now study the variance of |9, X¢|(t, x). Using equation we have
.d-2a

Ag(19:XEP)(E, x) = —

P D, RO (k4 ko) €)Ge(t, k)Ge(t, ka)g(kn)g (k).

ky ko€eZg
By Wick’s theorem ([Jan97], Theorem 1.28)
Cov(g(ki)g(k2), g(k1)g(k3)) = E[g(k1)g(kIE[g(k2)g (k)] + E[g (k1) (k))|E[g(k2)g (k)]
= Ixyk)=ka k) =0 + Ty =kp k=0,
which implies
£2d—4a

(2m)?

Var[Ay(|0:X*P)(t, x)] = Z (pg((k1 +k2)/€))*|Ge(t, k1)PGe(t, k).

k] ,kz EE‘ZS

For any g > 0 (the case g = —1 is left to the reader), the variables k; and k> are bounded
away from 0 and we have

‘ it IR(k)IIR(K>)]
Varl A (0. X4 P)(E x)] 5 25780 ) (pg((hka + ko) )P =

ky kp€eZd

A first estimate is obtained by just dropping the factor p,((k1 + k2)/¢) and results in the
bound

REDIRGD| _ 4sa_s

Var[Aq(WxXelz)(t’x)] S £2d+4—40‘ Z |k1|2|k2|2 -

kl,kQEé’Zg

35



Another estimate proceed by taking into account the constraint given by the support
of pg((k1 + k2)/¢). In order to satisfy ki + ko ~ €27 we must have k» < ki ~ €29 or
29 < ki ~ k. In the first case

2d+4-4 |R(k)IIR(k2) (B-2) pd+p+2-4 |R(k2)l
g2d+4—4a Z Hk2$k1~€2qW<2‘1ﬁ +B+ 04||R|| Z Ly <ens——5— e

k1,k26526’ széZd

- IR(K)
< @RI [ @k

since [R(k)|/|k1]? < IR |leo(€27)P~472 If £27 < ki ~ ko we similarly have

< (e21) 2R o0

2d+4 4 |R(k1)”R(k2)| q(B=2) Ld+p+2—4a | P |R(k2)|
© 3 Lenghiok, RGeS 2 Rl > Tearsk, T
k1 széZd szé‘Zg

s(€2q)ﬁ_2£4_4“||ﬁllwfdkllrlff;)|

< (£2q)ﬁ_284_4“||ﬁl|m02.

O

This lemma shows that the interesting situation is @ = 1. Then provided ¢2 < +oo
and B > 2 we have |9, X¢[*(t) = 02 in € for all t > 0, and in fact the convergence is
uniform on [c, C] for all 0 < ¢ < C. An easy consequence of this is that v converges to
the solution of the PDE

ZLv =0 (16)

and since X* — 0in Cr%” we finally obtain the convergence of (1:¢),-0 to the same v.

4.1 The 2d generalized parabolic Anderson model

The case « = 1 and = 2 remains open in the previous analysis. When f = 2 we
cannot expect o2 to be finite and moreover from the above computations we see that the
variance of |dy X¢|? remains finite and does not go to zero so the limiting object should
satisfy a stochastic PDE rather than a deterministic one. If we let 62(¢) = E[|d, X¢|*(t, x)]
(which depends on time but which is easily shown to be independent of x € T?), then
we expect that solving the renormalized equation

Ziif = Vit - o2t

X

should give rise in the limit to a well defined random field i satisfying ii = e* 3, where

LT =01+ 2(0x X, O D)pa

and where X is the limit of X¢ as ¢ — 0 while 7 is the limit of (d, X¢)?—0?2(t). The relation

t
of u® with ¢ is easily seen to be @i“(t,x) = e~ Jo oE(6)ds e (t,x). The renormalization
procedure is therefore equivalent to a time—dependent rescaling of the solution to the
initial problem.
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We will study the renormalization and convergence problem for a more general
equation of the form
ZLut =Fu)V,, 17)

where F : R — R is a sufficiently smooth non-linearity. One possible motivation is that
if z¢ solves the linear PDE and we set u® = @(z*) for some invertible ¢ : R — R such
that ¢’ > 0, then

Lut = (P’(ZE)XZE _ (P//(Zs)|8x26|2 — QDI(ZE)ZSVg _ q0//(25)«0/(25))—2|axug|2
and thus u¢ satisfies the PDE
Luf = F1(u5)Ve + Fo(ut)(9xu’)?

where Fi(x) = ¢’(p71(x))p~(x) and Fa(x) = =" (¢71(x))(¢’(p~1(x)))~2. In the situa-
tion we are interested in, the second term in the right hand side is simpler to treat than
the first term so, for the time being, we will drop it and we will concentrate on the equa-
tion (17) in d = 2 with @ = 1 and short ranged (f = d) potential V which we refer to as
generalized parabolic Anderson model (Gpam).

Under these conditions V. converges to the white noise in space which we usually
denote with & and our aim will be to set up a theory in which the non-linear operations
involved in the definition of the dynamics of the cram are well defined, including the
possibility of the renormalization which already appears in the linear case as hinted
above.

While the reader should always have in mind a limiting procedure from a well de-
fined model like the ones we were considering so far, in the following we will mostly
discuss the limiting equation. The specific phenomena appearing when trying to track
the oscillations of the term F(u®)V, as ¢ — 0 will be described by a renormalized product
F(u)< & and so we write the gram as

Lu(t,x) =F(u(t,x))o &(x), u(0) = uyp. (18)

In the linear case F(u) = u, the problem of the renormalization can be solved along the
lines suggested above. Another possible line of attack comes from the theory of Gaus-
sian spaces and in particular from Wick products, see for example [Hu02]. However,
the definition of the Wick product relies on the concrete chaos expansion of its factors,
and since nonlinear functions change the chaos expansion in a complicated way, there
is little hope of directly extending the Wick product approach to the nonlinear case and
moreover using these non-local (in the probability space) objects can deliver solutions
which are not physically acceptable [Cha00].
Equation is structurally very similar to the stochastic differential equation

dro(t) = Fo()9;B"(t),  0(0) = vy, (19)

where BH denotes a fractional Brownian motion with Hurst index H € (0, 1). There are
many ways to solve in the Brownian case. Since we are interested in a way that might
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extend to where the irregularity appears along the two—dimensional spatial variable
x, we should exclude all approaches based on information, filtrations, and a direction
of time; in particular, any approach that works for H # 1/2 might seem promising. But
Lyons’ theory of rough paths [Lyo98] equips us exactly with the techniques we need to
solve for general H. More precisely, if for H > 1/3 we are given fo. BHdB!, then
we can use the controlled rough path integral [Gub04] to make sense of fo' fsdBH for
any f which “looks like” B, and this allows us to solve . So the main ingredients
required for controlled rough paths are the integral fo‘ B;'dB! for the reference path

BH and the fact that we can describe paths which look like BH. Tt is worthwhile to
note that while we need probability theory to construct fol BI'dBl, the construction of
fo. fsdBE is achieved using pathwise arguments and it is given as a continuous map of f
and (BH , fo' BHdABH ) As a consequence, the solution to the SDE depends pathwise
continuously on (BH , fo. BldBH )

By the structural similarity of and (19), we might hope to extend the rough path
approach to . The equivalent of B! is given by the solution 9 to 9 = &, 8(0) = 0, so
that we should assume the renormalized product 9 ¢ £ as given. Then we might hope
to define f o £ for all f that “look like 9", however this is to be interpreted. Of course,
rough paths can only be applied to functions of a one-dimensional index variable, while
for the problem lies in the irregularity of & in the spatial variable x € T2.

In the following we combine the ideas from controlled rough paths with Bony’s para-
product, a tool from functional analysis that allows us to extend them to functions of a
multidimensional parameter. Using the paraproduct, we are able to make precise in a
simple way what we mean by “distributions looking like a reference distribution”. We
can then define products of suitable distributions and solve as well as many other
interesting singular SPDEs.

4.2 More singular problems

Keeping the homogenization problem as leitmotiv for these lectures, we could consider
also space-time varying environments V.(t,x) = ¢ *V(t/&2,x/¢). The scaling of the
temporal variable is chosen so that it is compatible with the diffusive scaling from a
microscopic description, where V(t, x) has typical variation in space and time in scales
of order 1. Assume that d = 1, then when the random field V is Gaussian, zero mean,
and with short-range space-time correlations, the natural choice for the magnitude of
the macroscopic fluctuations is & = 3/2. In this case V. converges as ¢ — 0 to a space—
time white noise £. Understanding the limit dynamics as ¢ — 0 of the solution u*¢
to the linear equation Zu® = V.u® represents now a more difficult problem than in
the time independent situation. A Gaussian computation shows that the random field
X¢, solution to £ X* = V, (e.g. with zero initial condition), stays bounded in Cr€'? as
¢ — 0. Since .7 is a second order operator (if we use an appropriate parabolic weighting
of the time and space regularities), £ is expected to live in a space of distributions of
regularity —3/2—. This is to be compared with the —1— of the space white noise which
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had to be dealt with in the gpam. Renormalization effects are then expected to be stronger
in this setting and the limiting object, which we denote with w, should satisfy a (suitably
renormalized) linear stochastic heat equation with multiplicative noise (sHE)

Lw(t,x)=w(t,x)o&(t, x), w(0) = wy. (20)

As hinted by the computations in the more regular case, it is useful to consider the
change of variables w = e" which is called Cole-Hopf transformation. Here & : [0, co) X
T — R is a new unknown which satisfies now the Kardar-Parisi-Zhang (xpz) equation:

Lh(t,x) = (Och(t, X)X+ E(t %),  h(0)=ho 1)

where the difficulty comes now from the squaring of the derivative but which has the
nice feature to be additively perturbed by the space-time white noise, a feature which
simplifies many considerations. Another relevant model in applications is obtained by
taking the space derivative of xpz and letting u(t, x) = dyh(t, x) in order to obtain the
stochastic conservation law

Lu(t, x) = d(u(t, x))°% + L E(¢, x), u(0) = uy, (22)

which we will refer to as the stochastic Burgers equation (sBe). In all these cases, ©
denotes a suitably renormalized product.

The kpz equation was derived by Kardar-Parisi-Zhang in 1986 as a universal model
for the random growth of an interface [KPZ86]. For a long time it could not be solved
due to the fact that there was no way to make sense of the nonlinearity (d.h) °24in .
The only way to make sense of xkpz was to apply the Cole-Hopf transform [BG97]: solve
SHE (which is accessible to It6 integration) and set & = log w. But there was no in-
trinsic interpretation of what it means to solve . Finally in 2012, Hairer [Hail3] used
rough paths to give a meaning to the equation and to obtain solutions directly at the
kpz level. In Section [p| we will sketch how to recover his solution in the paracontrolled
setting. Applications of the techniques used by Hairer to solve the xpz problem to a
more general homogenization problem with ergodic potentials (not necessarily Gaus-
sian) have been studied in [HPP13].

4.3 Hairer’s regularity structures

In [Hail4], Hairer introduces a theory of regularity structures which can also be con-
sidered a generalization of the theory of controlled rough paths to functions of a mul-
tidimensional index variable. Hairer fundamentally rethinks the notion of regularity.
Usually a function is called smooth if it can be approximated around every point by
a polynomial of a given degree (the Taylor polynomial). Naturally, the solution to an
SPDE driven by —say— Gaussian space-time white noise is not smooth in that sense. So in
Hairer’s theory, a function is called smooth if locally it can be approximated by the noise
(and higher order terms constructed from the noise). This induces a natural topology
in which the solutions to semilinear SPDEs depend continuously on the driving signal.
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At this date it seems that the theory of regularity structures has a wider range of
applicability than the paracontrolled approach described in [GIP13], but also at the
expense of a very deep conceptual sophistication. There are problems (like the one-
dimensional heat equation with multiplicative noise and general nonlinearity) that can-
not be solved using paracontrolled distributions, but these problems seem also quite
difficult (even if doable and work in progress) to tackle with regularity structures. More-
over, equations of a more general kind, say dispersive equations or wave equations, are
still poorly (or not at all) understood in both approaches.

5 The paracontrolled PAM

As we have tried to motivate in the previous sections we are looking for a theory for rpam
which describes the possible limits of the equation

Zu =F(u)n (23)

driven by sufficiently regular n but as ) is converging to the space white noise &. From
this point of view we are looking for a priori estimates on the solution u to which
depend only on distributional norms of 7. So in the following we will assume that we
have at hand only a uniform control of 17 in Cr¢”~2 for some y > 0. For the application
to the 2d space white noise we could take y = 1-, but we will not use this specific
information in order to probe the range of applicability of our approach and we will
only assume that the exponent y is such that 3y —2 > 0.

Assume for a moment that we are in the simpler situation y > 1and ug € €7 and let
us try to solve equation via Picard iterations (1), >0 starting from u° = u. Since F
preserves the C¢7 -regularity (which can be seen by identifying C¢” with the classical
space of bounded Holder-continuous functions of space), the product F(u°(t))n is well
defined as an element of 672 for all + > 0 since 2y — 2 > 0 and we are in condition
to apply Corollary (I below on the product of elements in Holder-Besov spaces. Now
by Lemma (11, the Laplacian gains two degrees of regularity so that the solution u! to
Zu' = Fu%n, u'(0) = ug, is in C%”. From here we obtain a contraction on Cr%? for
some small T > 0 whose value does not depend on 1, which gives us global in time
existence and uniqueness of solutions. Note that in one dimension the space white noise
has regularity ¢ ~1/2~ (see Exercise 11) so taking y = 3/2— we have determined that the
one-dimensional pam can be solved globally in time with standard techniques.

When the condition 2y — 2 > 0 is not satisfied we still have that if n € Cr%7~2
thenu € £V = C1€77%2 N C? L by the standard parabolic estimates of Lemma
However with the regularities at hand we cannot use Corollary[IJanymore to guarantee
the continuity of the operator (u, 1) = F(u)n. Moreover, as already seen in the simpler
homogenization problems above this is not a technical difficulty but a real issue of the
regime y < 1. We expect that controlling the model in this regime can be quite tricky
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since limits exists when n — 0 but the limiting solution still feels residual order one
effects from the vanishing driving signal 7. This situation cannot be improved from the
point of view of standard analytic considerations. What is needed is a finer control of
the solution u which allows to analyse in more detail the possible resonances between
the fluctuations of u and those of 7.

Before going on we will revise the problem of multiplication of distributions in the
scale of Holder-Besov spaces, introducing the basic tool of our general analysis: Bony’s
paraproduct.

5.1 The paraproduct and the resonant term

Paraproducts are bilinear operations introduced by Bony [Bon81] to linearize a class of
nonlinear hyperbolic PDEs in order to analyse the regularity of their solutions. In terms
of Littlewood-Paley blocks, a general product fg of two distributions can be (at least
formally) decomposed as

f8=) D AifAg=f<g+f>g+fog.

j>=li>-1

Here f < g is the part of the double sum with i < j —1, f > g is the part with i > j +1,
and f o g is the “diagonal” part, where |i — j| < 1. More precisely, we define

j—2
f<g=g>f=), ) MfAjg and  fog= ) AifAg.

j>—1i=—1 li—jl<1

Of course, the decomposition depends on the dyadic partition of unity used to define
the blocks Aj, and also on the particular choice of the pairs (i, j) in the diagonal part.
The choice of taking all (i, j) with |i—j| < 1 into the diagonal part corresponds to the fact
that the partition of unity can be chosen such that supp Z(A;fAjg) C 2./ ifi < j—1,
where ¢/ is a suitable annulus. If |i — j| < 1, the only apriori information on the spectral
support of the various term in the double sum is supp .Z(A; fAjg) C 2/.%, that is they
are supported in balls and in particular they can have non—zero contributions to very
low wave vectors. We call f < g and f > g paraproducts, and f o g the resonant term.
Bony’s crucial observation is that f < g (and thus f > g) is always a well-defined
distribution. Heuristically, f < ¢ behaves at large frequencies like ¢ (and thus retains the
same regularity), and f provides only a frequency modulation of g. The only difficulty
in constructing f ¢ for arbitrary distributions lies in handling the diagonal term f o g.
The basic result about these bilinear operations is given by the following estimates.

Theorem 3 (Paraproduct estimates) For any p € Rand f, g € ." we have

If <glls <p I fllc=lgllg, (24)
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and for a < 0 furthermore
If <glla+p Sap Il fllaligllp- (25)

For a + g > 0 we have
1f © 8llasp Sap Ifllaligllp- (26)

Proof There exists an annulus & such that Sj_; fA;g has Fourier transform supported
in 2/.¢/, and for f € L* we have

1Sj-1fAjglls < 1ISj=1 fllisllAjgllee s 1l fllee277PlIg -

By Lemma [10}, we thus obtain (24). The proof of of and works in the same
way, where for estimating f o ¢ we need a + > 0 because the terms of the series are
supported in a ball and not in an annulus. m|

A simple corollary is then the following:

Corollary 1 Let f € €% and ¢ € €P with a + B > 0, then the product (f,g) — fgisa
bounded bilinear map from €* X €P to €*F. While f <g, f> g, and f o g depend on the
specific dyadic partition of unity, the product f g does not.

The independence of the product from the dyadic partition of unity easily follows
by taking smooth approximations.

The ill-posedness of f o g for @+ < 0 can be interpreted as a resonance effect since
f o g contains exactly those part of the double series where f and g are in the same
frequency range. The paraproduct f < g can be interpreted as frequency modulation of
g, which should become more clear in the following example.

Example 3 In Figure (1) we see a slowly oscillating positive function u, while Figure
depicts a fast sine curve v. The product uv, which here equals the paraproduct u <v
since u has no rapidly oscillating components, is shown in Figure [3l We see that the

local fluctuations of uv are due to v, and that uv is essentially oscillating with the same
speed as v.

\VAVY2a VAV

et o e

Figure 3: The function u <v
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Example 4 If f € €7(T) and g € €°(T) with y + 6 > 1, then we can define ffdg =
f (fd:g), which is well defined since ;¢ € %! and y + 6 — 1 > 0, and since integration
is a linear map. In this way we recover the Young integral [You36|.

Example 5 Let BY be a fractional Brownian bridge on T (or simply a fractional Brownian
motion on [0, 7], reflected on [7t,27]) and assume that H > 1/2. We have ¢(BH) € €'~
for all Lipschitz continuous ¢, and d;BH € #(H=D-, and in particular @(B)d;B is
well-defined. This can be used to solve SDEs driven by B in a pathwise sense.

The condition a + > 0 is essentially sharp, at least at this level of generality,
see [You36] for counterexamples. It excludes of course the Brownian case: if B is a Brow-
nian motion, then almost surely B € (fl‘c’)‘c for all @ < 1/2, so that d;B € Cgl‘éc_l and thus
B o d;B fails to be well defined. See also [LCL07], Proposition 1.29 for an instructive ex-
ample which shows that this is not a shortcoming of our description of regularity, but
thatitis indeed impossible to define the product Bd;B as a continuous bilinear operation
on distribution spaces.

Other counterexamples are given by our discussion of the homogenization problem
above. More simply, one can consider the following situation.

Example 6 Consider the sequence of functions f, : T — Cgivenby f,(t) = e’ /1. Then
itis easy to show that || f ||, — Oforall y < 1/2. Howeverlet g,(t) = Re f,(t)Im d; f,(t) =
cos(n?t)?. Then g, — 1/2 in ¢°~ which shows that the map f +— (Re f)(d; Im f) can-
not be continuous in 47 if y < 1/2. Pictorially the situation is summarized in Figure [4

where we sketched the three dimensional curve givenby ¢ (Re fu(t), Im f,(t), fot gn(s)ds )

for various values of n and in the limit.

581 |

Figure 4: Resonances give macroscopic effects

5.2 Commutator estimates and paralinearization

The product F(u)n appearing in the right hand side of pam can be decomposed via the
paraproduct < as a sum of three terms

F(u)n=F(u)<n+Fu)on+F(u)>n.

The first and the last of these terms are continuous in any topology we choose for F(u)
and 1. The resonant term F(u)o n however is problematic. It gathers the products of
the oscillations of F(u) and 1 on comparable dyadic scales and these products can con-
tribute to all larger scales in such a way that microscopic oscillations might build up to
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a macroscopic effect which does not disappear in the limit (as we already have seen). If
the function F is smooth enough, then we expect the resonances between F(u) and 7 to
correspond to the resonances between u# and 7, and as we will see this is justified.

The expected regularity of the different terms is

F(u)<n+F(u)on+F(u)>n, (27)
—_———— — — — —
y—2 2y-2 2y-2
but unless 2y—2 > 0 the resonant term F(u) o 1 cannot be controlled using only the C¢"7 -
norm of u and the C%7~>-norm of 1. If F is at least C2, we can use a paralinearization
result (stated precisely in Lemma below) to rewrite this term as

F(u) on= F/(u)(u © 7]) + HP(“: T]), (28)

with a remainder ITp(u, 1) € ¥°7~2 provided 3y — 2 > 0. The difficulty is now localized
in the linearized resonant product u o 7. In order to control this term, we would like
to exploit the fact that the function u is not a generic element of C¢? but that it has a
specific structure, since .Z'u has to match the paraproduct decomposition given in (27)
where the least regular term is expected to be F(u) <1 € C¢7 2.

In order to do so, we postulate that the solution u is given by the following paracon-
trolled ansatz:

u=uX<X+ uﬁ,

for functions uX, X, u# such that uX, X € ¢7 and the remainder u# € C%?’. This de-
composition allows for a finer analysis of the resonant term u o 1: indeed, we have

uon:(uX<X)on+uﬁoq:uX(Xon)+C(uX,X,q)+uﬁon, (29)

where the commutator is defined by C(u*, X, 1) = (u* < X) o n—u*(X o 17). Observe now
that the term u* o 1 does not pose any further problem, as it is bounded in C¢°2. The
key point is now that the commutator is a bounded multilinear function of its arguments
as long as the sum of their regularities is strictly positive, see Lemma (14| below. By
assumption, we have 3y — 2 > 0, and therefore C(u%, X, 1) € C¢°72.

The only problematic term which remains to be handled is thus the bilinear func-
tional of the noise given by X o 1. Here we need to make the assumption that X on €
C%?’~2 in order for the product uX(X on) to be well defined. This assumption is not
guaranteed by the analytical estimates at hand, and it has to be added as a further re-
quirement to our construction.

Granting this last step, we have obtained that the right hand side of equation (23) is
well defined and a continuous function of (u, u%X, ut X, n, X on).

It remains to check that the paracontrolled ansatz is coherent with the equation sat-
isfied by solutions to pam. Let us first consider the linear example F(u) = u. Here we
saw that the solution is of the form u = e*Xv with

g?] = UlaxX|2 + 2<axv, axX>R2,
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where |0, X|?> € C€?~2 and 9, X € C%7~! and therefore v € C%?. In particular
u=eXv=v<eX+CeY =v<(eX<X)+C€%,

using a paralinearization result in last step (see Lemma (15| below). Now the double
paraproduct f < (g < h) satisfies

If <(g<h) = (f&) <hllasp < I fllaliglallllp,

see [Bon81], and therefore u = (veX) < X + C€? = u < X + C¢* which shows that the
paracontrolled ansatz is at least justified in the linear case.

In the nonlinear case, the paracontrolled ansatz and the Leibniz rule for the para-
product imply that (23) can be rewritten as

Lu=2LuX <X+u) = uX < LX+[L,u¥ <] X+ ZLu? = F(u) < n+F(u)on+F(u)> 1,

where we recall that [.Z, u* < | X = Z(uX < X) — uX < X denotes the commutator. If
we choose X such that #X = 1 and we set u* = F(u), then we can use and to
obtain the following equation for the remainder u*:

2ut = F(u)F(u)(Xon)+Fu)>n-[2,Fu)<]X

+F'(u)C(F(u), X, n) + F'(u)(uf o n) + ITp(u, n). (30)

Lemma below ensures that £~ 1 [.Z,F(u) <] X € C€* whenever u € .£7, and we
have already seen that all the other terms on the right hand side are in C%’~2 so that
this allows us to control u* in C£?. Together with u = F(1) < X +u*, equation 1} gives
an equivalent description of the solution and allows us to obtain a priori estimates on u
and u* in terms of (1o, Inll, -2, 11X © nll2y—2). It is now easy to show that if F € C3, then u
depends continuously on the data (1, 1, X o 17), so that we have a robust strategy to pass
to the limit in (17) and to make sense of the solution to (23) also for irregular € C%7~2
aslongasy > 2/3.

In the remainder of this section we will prove the results (paralinearization and vari-
ous key commutators) which we used in the discussion above, before going on to gather
the consequences of our analysis in the next section. When the time dependence does
not play any role we state the results for distributions depending only on the space vari-
able as the extension to time varying functions will not add further difficulty.

Lemma 14 Assume that o, 8,y € R are such that o + B+ 7y > 0and p+y # 0. Then for
f, 8, h € C*® the trilinear operator

C(f, g M) =((f<g)oh)~f(goh)

allows for the bound
IC(f, & Mllpsy < flallgllpliPlly s (31)
and can thus be uniquely extended to a bounded trilinear operator from € X 6P X6 to €F*7.
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Proof For  + y > 0 this follows from the paraproduct estimates, so let § + y < 0. By
definition

C(f, g, h)= Z Ai(Aj fAQ)Ah(Ti<k—1li—ei<1 — Tjk—<1)
Y

= Z Ai(Aj fALQ)Ah(Tj <k 11— <ilik—ej<n — Tik—e1<1),
i,j k€

where we used that Sx_1 f Ay ¢ has support in an annulus 2.¢7, so that A;(S—1 fArg) # 0
only if [i —k| < N —1 for some fixed N € N, which in combination with |i — £| < 1 yields
|k — €] < N. Now for fixed k, the term ), Ir<jx—¢j<nArgAch is spectrally supported in
an annulus 2X.#7, so that 2ok <k—e<NAKgAch € €P*7 and we may add and subtract
f 2o bap-e<nAkgAch to C(f, g, h) while maintaining the bound . It remains to
treat

Z Ai(Aj f A AehTk—gj N[ <k-1Li—g1<1 = 1)
ik

= - Z Ai(Aj f AN kg Tjsk-1 + Tjck-1li—g>1)-  (32)
oy

We estimate both terms on the right hand side separately. For m > —1 we have

A ( Z Ai(ATf M)A T frenTjsk1 ) |

ijk,€
< TigenTiska lAn(A; A AM = < > > 27 Flla2 *PlIglls27 [l
jk,t jrm ksj
< > 27D fllaligllglinll, < 27" P £l gllglilly,
jzm

using f + y < 0. It remains to estimate the second term in (32). For |i — £| > 1 and
i ~k ~ ¢, any term of the form A;()A(() is spectrally supported in an annulus 2le7, and
therefore

[ ( Z Az‘(A]’fAkg)Afh]I|k—f|<N1j<k—1ﬂ|i—f|>1)||Lm
L7k,
$ D) LckalinkeromllAi(A] FALQ)A 1o
ik,
S Z 27 flla27"PlIglg2 " helly < 27" E ) Fllalig gl
jsm

O

Remark 4 For  + 7 = 0 we can apply the commutator estimate with " < y, as long as
a+p+y >0.
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Our next result is a simple paralinearization lemma for non-linear operators.
Lemma 15 (see also [BCD11], Theorem 2.92) Leta € (0,1), 5 € (0, ], andlet F € C;Jrﬁ/a.
There exists a locally bounded map Rp : €* — €%+ such that

F(f) = F(f)<f +Re(f) (33)
forall f € €*. More precisely, we have

1
||RF(f)”a+‘8 < ||F||Cll7+ﬁ/“(1 + ”f”a+ﬁ/a)'

2+B/a

IfFeC,

, then R is locally Lipschitz continuous:

IRF(f) = RE()lasp < Fllc2epre (1 + 11 flla + Il P11 f = glla-

Proof The difference F(f) — F'(f) < f is given by

Re(f) = F() = F(f)<f = 3 INF() = SaF (HAfT= Y u,

i>-1 i>-1

and every u; is spectrally supported in a ball 2/ 4. Fori < 1, we simply estimate ||u;]|.~ <
||F||Cl17(1 + ||flla). For i > 1 we use the fact that f is a bounded function to write the

Littlewood-Paley projections as convolutions and obtain

i) = f Ki(x — )K<ia(x — DIF(F(y) - F(F@) f(n)ldydz
= [ Kila = pKeaala = DMFG ) - FF @) - W) - fdyt,

where K; = ﬂ“lpi, K<i—1 = X j<i—1 Kj, and where we used that f Ki(y)dy = pi(0) =0 for
i > 0and f K.i—1(z)dz =1fori > 1. Now we can apply a first order Taylor expansion to

F and use the f/a-Holder continuity of F/ in combination with the a—Holder continuity
of f, to deduce

1
i) < Il £l f IKi(x = y)Keiza(x = 2)| % |z = y|*Pdydz
1 _.
S IEl sl flla™ 27D

Therefore, the estimate for Rr(f) follows from Lemma[10} The estimate for Rr(f)—Rr(g)
is shown in the same way. O

Let g be a distribution belonging to ¢ for some g < 0. Then the map f — fog
behaves, modulo smoother correction terms, like a derivative operator:
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Lemma16 Let @ € (0,1), € (0,], y € Rbesuchthat a+p+7y >0and a+y # 0. Let
F e CI*P' Then there exists a locally bounded map I1f : €% X €7 — €**7 such that

b
F(f)og =F(f)(fog)+IIk(f, ) (34)
forall f € €* and all smooth g. More precisely, we have

1
I3 CF, @lary < WE oo @+ 1F 12 llg -

2+B/a

IfFeC,

, then T1F is locally Lipschitz continuous:

”HF(f/ g) - HP(“/ v)||a+)/
S ||F||C§+ﬁ/a(1 + 1 flla + ) 2@ + ol ) f = ulla + 118 = olly)-

Proof Use the paralinearization and commutator lemmas above to deduce that

H(f,8)=F(f)eg —F(f)(fog)=Re(f)og+(F(f)<fleg—F(f)(feg)
=Re(f)og+C(F(f), f,8),

so that the claimed bounds easily follow from Lemma|14|and Lemma |

Besides this sort of chain rule, we also have a Leibniz rule for f — f o g:

Lemma 17 Let a € (0,1) and y < 0 be such that 2a +y > 0and a + y # 0. Then there exists
a bounded trilinear operator Iy : € X €* X €V — €7, such that

(fu)og = fluog)+u(fog)+Ik(f, u,g)
forall f,u € €*(R) and all smooth g.

Proof It suffices to note that fu = f <u + f > u + f ou, which leads to

I(f,u,8)=(fu)og— fuog)+u(fog)=C(f,u,g)+Cu, f,g)+(fou)og.

O

Lemma18 Let B <1, a € R andlet f € £P and G € CE* with LG € CE*2. There exists
H = H(f,G) such that #H = £, f <| G and H(0) = 0. Moreover H € C€*+f nC@ )2 >
and forall T > 0

1= lltaprzp o + 17 licygose S 111l 5 (IGllcres +1ZGlicyge2) -

48



Proof Let T > 0and let f. be a time mollification of f such that ||0; fe|lc,r < ef/27|f]| b
T

and || fe = fllc;re S €P/?||f|l 4 for all € > 0. For example we can take f, = p, * f with
pe(t) = p(t/e)/e and p : R = R compactly supported, smooth, and of unit integral. For
i > —1 we have

LNH =N [ZL(f - fo)<G) = (f — fo) < ZLG| +Ai|[L(fe <G) - fe < ZLG],
so that

ZLNH = (f = fo)<G) = =N [(f = fo) < ZLG|+ A [Z(fe <G) — fe < ZG]
=Ai|(fe = )< LG+ N[ L fe <G =20 fe <G|,

with initial condition A;(H — (f — f:) <G)(0) = —(Ai(f — f¢) <G)(0). The Schauder
estimates for . (Lemma(11)) give

IAH +(f = £ <)l o
<IA(F = £ <214 A [(Z£) <G + 24 fe <0Gl o
+IAf = £ < GYOllass

Choosing ¢ = 27%, we have

18:((f = fe) < Olleygass < 2PNAK(f = fo) < Ollcrae < 2P1If = fellern=lIGllcrwe
S M1l gpllGller

and exactly the same argument also gives
1A [(f = £ < ZGlllcypusp2 < Mfll o 1L Cllcygom2
Since < 1, we further get

18 [Z fe < G + 9x fe < 9xGlll, gasp-2 2PNk felleri=IGllcyza + Il felle 481l Gllcywe

< ||f||$]/§||G||cT<ﬂ + | fllcyesll Gllcree-
Combining everything, we end up with

IAiH]|cpgess S ||f||$f (IGllcy%e + 12 Gllcyga-2) s

which gives the estimate for the space regularity of H since ||A;H||c;r~ < 2|\ A, H llcpegass-

The time regularity of H can be controlled similarly by noting that (f—f.) <G € C (Ta/\ﬁ )/ L,
uniformly in e. |
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5.3 Paracontrolled distributions

Here we build a calculus of distributions satisfying a paracontrolled ansatz. We start by
defining a suitable space of such objects.

Definition 5 Let a > 0 and p € (0, o] be such that a + € (0,2), and let u € L. A pair of
distributions (f, f*) € L*xZLP is called paracontrolled by g if f¥ = f—f* <u € CEFNLP.
In that case we write f € 2P = 9P(u), and for all T > 0 we define the norm

WA = 1l e + 1L FH N e + fFllepgass + 1L 2 -
7% « Rz cbrr
Ifii € % and (f, f*) € PP(ii), then we also write
A (fo F) = IF" = Foll g+ UFF = Pl + 1% = FPllcpn o

Of course we should really write (f, f*) € 2P since given f and g, the derivative
f" is usually not uniquely determined. But in the applications there will always be an
obvious candidate for the derivative, and no confusion will arise.

Remark 5 The space #* does not depend on the specific dyadic partition of unity. In-
deed, Bony [Bon81] has shown that if < is the paraproduct constructed from another
partition of unity, then || f* <u — f* < ul|c, gass < 1 f¥llc e lltllcren.

Nonlinear operations As an immediate consequence of Lemma [14{ we can multiply
paracontrolled distributions provided that we know how to multiply the reference dis-
tributions.

Theorem 4 Leta,feR, y <0, witha++y >0anda+7y #0. Let u € C¢%, v e C¢7,
and let n € C€*Y. Then

PPu)s f fo=f<v+f>v+ ffov+C(f* u,0)+ f'neCe”
defines a linear operator which for all T > 0 admits the bound
o) e = I f -0 f <0llcpgasr < £ 1l (lollerer + lllcreslollerer + lInllerge).

If there exist sequences of smooth functions (u,,) and (v, ) converging to u and v respectively for
which (u, o vy,) converges to 1, then f - v does not depend on the dyadic partition of unity used
to construct it.

Furthermore, there exists a quadratic polynomial P so that if ii, T, 7} satisfy the same assump-
tions as u, v, 1) respectively, if f € PP(ii), and if
M = max {lulleran, Iollerer, Inlleres, Nillere, I lesier, Nllcsieosr 1l o Nl b
then

I(F0) = (F5) llasy < POM) (dgs(f, F) + llu = dilla + 1o = 3l + 17 = fllasy) -
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Given Lemma [14] (and the paraproduct estimates Theorem [3), the proof is straight-
forward and we leave it as an exercise. From now on we will usually write fov rather
than f - v.

To solve equations involving general nonlinear functions, we need to examine the
stability of paracontrolled distributions under smooth functions.

1+p/a

b . Then

Theorem 5 Let « € (0,1)and p € (0, ). Let u € £, f € 2*(u),and F € C
E(f) € 9P with derivative (F(f))" = F'(f)f", and forall T > 0

HIEC g < NElcrepra (T + ||f||37¥)(1 + ”u””zgﬁt)-

Moreover, there exists a polynomial P which satisfies for all F € C?ﬁ l* e e f e 24,

and
M := max {||u||.,sf]ev, il ze, Nl flle ||f||@¢(a)}

the bound . )
d@g(F(f), E(f)) < P(M)”F”C?ﬁ/ﬂ(d@‘;(]{/ )+ lu =il ze).

The proof is not very complicated but rather lengthy, and we do not present it here.

Schauder estimate for paracontrolled distributions The Schauder estimate Lemmall 1]
is not quite sufficient: we also need to understand how the heat kernel acts on the para-
controlled structure.

Theorem 6 Let & € (0,1)and p € (0,a)]. Let u € C€*2 and LU = u with U(0) = 0. Let
e LP, ff e CEF2,and go € €**F. Then (g, f*) € 2F(U), where g solves

.i”g:f”<u+fﬁ, 2(0) = go,
and we have the bound

18151y  gollas + L+ TUF s 1+ Nullerge-s) + 11 ¥l o)

forall T > 0. Iffurthermore i, U, f*, f*, 3o, § satisfy the same assumptions as u, U, f*, f%, g0, g

respectively, and if M = max{|| f*|| s, [lt|lc;5a-2, 1}, then
T

(8,8 5 1180 = Zollarp + (1 + TIMIf* — f‘”llg;g +llu = dllcyga + 1% = Fllc,gan).
Proof Let us derive an equation for the remainder g¥. We have

Lt = L(f <U)- Lg=[L(f* <U) - f' < LU+ f* < LU~ [f*<u+ fF
=z, fr<Ju-f*h
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By Lemmawe know that there exists H € C#***NCP/2L > such that ZH = [.Z, f* <],
so we can apply the standard Schauder estimates of Lemma11{to £(g* — H) = - f# to
get

18 llcs 5w +18¥ ez S Py UIUllersee + 1L Ullergos) + 1 fAlle g

The estimate for ¢* — §* can be derived in the same way. |

Bibliographic notes Paraproducts were introduced in [Bon81], for a nice introduc-
tion see [BCD11]. The commutator estimate Lemma [14{is from [GIP13], but the proof
here is new and the statement is slightly different. In [GIP13], we require the additional
assumption a € (0,1) under which C maps ¢ X €* x €7 to €**F*7 and not only to
€P+Y . Theorem [5|is from [GIP13].

Theorem [p|is new, but it is implicitly used in [GIP13]]. The estimates presented here
will only allow us to consider regular initial conditions. More general situations can be
covered by working on “explosive spaces” of the type

€ C((0,00),€%) : sup ||tV f(t)||ge < coforallT >0
(0}%]
te(0,

and similar for the temporal regularity. This is also done in [GIP13]].

Of course it is easily possible to replace the Laplacian by more general pseudo-
differential operators. We only used two properties of A: the fact that A(f" <U) —
f’ <(AU) is smooth, and that the semigroup generated by A has a sufficiently strong
regularization effect. This is also true for fractional Laplacians and more generally for a
wide range of pseudo-differential operators.

5.4 Fixpoint

Let us now give the details for the solution to ram in the space of paracontrolled distri-
butions. Assume that F : R — R isin Cz” for some ¢ > 0 such that (2 + ¢)y > 2.
We know from Theorem[|thatif Y € C¢” and u € 27(Y), then F(u) € 27(Y):

27(v) 22EY, gev(y, (35)

Ifnow Y on € C%% 2 is given, then Theorem[d|shows that for all f € 27 we have f1 =
(f17)ﬁ + F(u) < nwith (1—"(u)17)‘i € C€? 2 —itis here that we use (2 + ¢)y > 0. Integrating
against the heat kernel and assuming that ug € ¢, we obtain from Theorem |§I that the

solution (J(f1)(t) + Pruo)i=o to LJ(fn) + P.ug = (fn), J(fn)(0) + Poug = uo, is in 27(X),
where X solves .ZX = 1 and X(0) = 0. In other words, we have a map

DEV(Y) Sfrouwtlfn 27(X), (36)

and combining (35), we get

P7(Y) o) Z47(Y) F@)muot]EGm, P7(X),
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so that for all T > 0 we can define
I'r:20(Y) - 2,/ (X), Ir(u) = (uo + J(F(uw)n)lo,1)-

To set up a Picard iteration domain and image space should coincide which means we
should take Y = X. Refining the analysis, we obtain a scaling factor T? when estimating
the .@%/ (X)-norm of I'r(u). This allows us to show that for small T > 0, the map I'r leaves
suitable balls in @%/ (X) invariant, and therefore we obtain the (local in time) existence of
solutions to the equation under the assumption X o € C¢2/72.

To obtain uniqueness we need to suppose that F € Ci“. In that case Theorem
gives the local Lipschitz continuity of the map u +— F(u) from .@%/ (X) to .@;V (X), while
Theorem [4 and Theorem [6] show that f - ug + J(f1) defines a Lipschitz continuous
map from @;y(X) to @%/ (X). Again we can obtain a scaling factor T?, so that I't defines
a contraction on a suitable ball of .@%/ (X) for some small T > 0.

Even better, I'r not only depends locally Lipschitz continuously on u, but also on the
extended data (1o, 17,X o 1), and therefore the solution to depends locally Lipschitz
continuously on (1, n, X o n).

5.5 Renormalization

So far we argued under the assumption that X o n exists and has a sufficient regularity.
This should be understood via approximations as the existence of a sequence of smooth
functions (1,,) that converges to 7, such that (X, o n,,) converges to X o 1. However, this
hypothesis is questionable and, recalling our homogenization setting, actually not sat-
isfied at all in the problem we are interested in. More concretely this can be checked by
considering an approximation sequence, for example if n = £ is the two-dimensional
space white noise. Indeed, if ¢ is a Schwartz function on R? and if ¢,, = n¢(n-) and

Mn(X) = @ * E(x) = fRz Pu(x =&Yy = D (&, @ulx +2mk =),

kez?

then we will see below that there exist constants (c,) with lim, ¢, = oo, such that
(X o1y — cy) converges in Cr€¢? 2 forall T > 0.

This is not a problem with our specific approximation. The homogenization setting
shows that even for 7 — 0 there are cases where the limiting equation is nontrivial.
In the paracontrolled setting we have continuous dependence on the data (1, X o 1), so
this non-triviality of the limit can only mean that it is X o 7 which does not converge to
zero.

Another way to see that there is a problem is to consider the following representation
of the resonant term: use X = 1 to write

Xon=XoZX= %3(XoX)+8xXoaxX =0 X|* + %z(XoX) — 20, X < 0: X.
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Integrating this equation over the torus and over t € [0, T], we get

T T T
f f X ondxdt = f f |ax><|2dxc1t+1 f (X(T) o X(T))dx—2 f f (0xX < 9 X)dxdt
0o Jr 0o Jr 2 Jr 0o Jr

but now if Xon € Cr€? % and X € Cr%” then all the terms should be well defined

T
and finite but this is cannot be since would mean that fo fT |0, X[*dxdt < +o0. By direct
computation however we can check that

f 19x X (¢, )PPdx = +00
T

for any t > 0 almost surely if 1 is the space white noise. Note also that the problem-
atic term |0, X|? is exactly the correction term appearing in the analysis of the linear
homogenization problem above.

In order to obtain convergence of the smooth solutions in general, we should intro-
duce corrections to the equation to remove the divergent constant c,,.. Let us see where
the resonant product X o n appears. We have

(Fa)n)* = F(u) > n+ (Fw)* o n+ C(Fw)*, X, n) + (Fw))*(X o ).

Now (F(u))X = F'(u)u* by Theorem and if u solves the equation, then u* = F(u) by
Theorem 6| So we should really consider the renormalized equation

Luy =F(uy)ony =F(uy)éy — F'(uy)F(y)cn
and in the limit
ZLu=Fu)on:=(Fu)on) +Fu)<n, (37)

where the paracontrolled product (F(u) ¢ n)* is calculated using X ¢ 1 = lim,(X,, 0 1, —
;) in the place of X o 7. Formally, we also denote this product by F(u)on = F(u)n —
F’(u)u* - 00, so that the solution u will satisfy

ZLu=F(u)— F(u)F(u) - c.

Note that the correction term has exactly the same form as the It6/Stratonovich corrector
for SDEs and indeed we should consider as the “Ito form” of the equation.

Remark 6 The convergence properties of (X, o 1,,) are in stark contrast to the ODE set-
ting: if we consider the equation d;u = F(u)C rather than pam, then we should replace X
by Z with d;Z = C. But then we have in one dimension Z o C = 1/29;(Z o Z), so that the
convergence of (Z, o C,) to Z o C comes for free with the convergence of (Z,) to Z. This
is due to the Leibniz rule for d; and it is the reason why rough path theory is trivial in
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one dimension. As we have discussed, for the second order differential operator .Z we
have different rules and

(Xom)=(Xo2X) = 2 #(XoX)+(2:X09.X),

so that in our setting the nontrivial term is dy X o d, X.

These considerations lead naturally to the following definition.
Definition 6 (pam-—enhancement) Let y € (2/3,1) and let
Xpam € €72 x CE2 2
be the closure of the image of the map
Opam : C* X C([0, ), R) = Xpam,

given by
Opam(6, f) = (0,20 0) :=(6,D0 0 - f), (38)

where @ = ] 0, that is £® = 0 and O(0) = 0. We will call Opam (0, f) the renormalized pam-—
enhancement of the driving distribution 0. For T > 0 we define Xpam(T) = Xpamljo,r] and we
write ||X||x,.(r) for the norm of X € Xpam(T) in the Banach space €7 ~> x Cr¢*~2. Moreover,

we define the distance d.r)(X, X) = ||IX = X||x ,..(7).

Remark 7 It would be more elegant to renormalize ® o O with a constant and not with
a time-dependent function. But since we chose ®(0) = 0, we have ®(0) o 0 = 0 and there-
fore (©,(0) 0 0, — c,,) diverges for any diverging sequence of constants (c,). A simple
way of avoiding this problem is to consider the stationary version ® given by

B(x) = fo " POt

where I, denotes the projection on the non-zero Fourier modes, IT.ou = u — (0).
But then ® does not depend on time and in particular ®(0) # 0, so that we have to
consider irregular initial conditions in the paracontrolled approach which complicates
the presentation. Alternatively, we could observe that in the white noise case there ex-
ist constants (c,) so that (X, (t)o &, — c¢,) converges for all t > 0, and while the limit
(X(t)o &) diverges as t — 0, it can be integrated against the heat kernel. Again, this
would complicate the presentation and here we choose the simple (and cheap) solution
of taking a time-dependent renormalization.

Theorem 7 Let y € (2/3,1) and ¢ > 0 be such that 2+ &)y > 2. Let X = (X, 1) € Xpam,
F e Ci“, and ug € €. Then there exists a unique solution u € 27(X) to the equation

Su=Fuyon,  u(0)=u,
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up to the (possibly finite) explosion time T = T(u) = inf {t >0: ||u||@[,v = oo} > 0.
Moreover, u depends on (19, X) € €2 X Xpam in a locally Lipschitz continuous way: if
M, T > 0 are such that for all (o, X) with |[uolly V [|Xlx,mr)y < M, the solution u to the

equation driven by (ug, X) satisfies T(u) > T, and if (ily, X) is another set of data bounded in
the above sense by M, then there exists C(F, M) > 0 for which

oy (u, 1) < C(F, M)(lto = iollay + (1) (X, K).

Proof We only have to turn the formal discussion of Section |5.4| into rigorous mathe-
matics. The small factor T is obtained from a scaling argument and while this does
not require any new insights it is somewhat lengthy and we refer to [GIP13, I[GP14] for
details.

Let us just indicate how to iterate the construction to obtain the existence of solutions
up to the explosion time 7. Let us assume that we constructed u on [0, Ty] for some
To > 0. Now we no longer have X(Ty) = 0, and also the initial condition u(Tp) is no
longer in ¢’?’. But we only used X(0) = 0 to derive the initial conditions for u’ and ut,
and we only used ug € €7 to obtain €2 initial conditions for u*. Since now we already
know (1/(To), u*(Tp)) € €7 x €27, we do not need this anymore.

As for the continuity in (1, X), let (ilp, X) be another set of data also bounded by M.
Then the solutions u and i both are bounded in 9%’ by some constant C = C(F, M) > 0.
So by the continuity properties of the paracontrolled product (and the other operations
involved), we can estimate

(4, 7) < P(C) (I = oy + A1y, ) + Tl 11, 1)

for a polynomial P. The local Lipschitz continuity on [0, T] immediately follows if we
choose T' > 0 small enough. This can be iterated to obtain the local Lipschitz continuity
on “macroscopic” intervals. m|

Remark 8 For the local in time existence it is not necessary to assume F € Ci*e , it suffices
if € C2*¢. This can be seen by considering a ball containing uo(x) for all x € T¢, a
function F € Ci“ which coincides with F on this ball, and by stopping u upon exiting
the ball.

In the linear case F(1) = u we have global in time solutions: in general we only get
local in time solutions because we pick up a superlinear estimate when applying the
paralinearization result Theorem |5, This step is not necessary if F is linear, and all the
other estimates are linear in u.

5.6 Construction of the extended data

In order to apply Theorem [7]to equation with white noise perturbation, it remains
to show that if £ is a spatial white noise on T2, then & defines an element of Xpam- In
other words, we need to construct X ¢ &.
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Since P;¢£ is a smooth function for every t > 0, the resonant term P; & o & is a smooth
function, and therefore we could formally set X o & = fOOO(Pté o &)dt. But we will see
that this expression does not make sense.

Recall that (£ (k))ez2 is a complex valued, centered Gaussian process with covariance

E[E(K)E(K)] = dkarr=0, (39)
and such that £(k)* = £(~k).

Lemma 19 For any x € T? and t > 0 we have

gt =E[(Pr& 0 &)(0)] = E[A1(Pr& 0 )()] = @m) 2 ) e~k
kez?
In particular, g; does not depend on the partition of unity used to define the o operator, and
fot gsds = oo forall t > 0.
Proof Letx € T2, > 0, and ¢ > —1. Then
E[A((Pi& o)) = > BlA(A(PEAE))],
li=jl<1

where exchanging summation and expectation is justified because it can be easily ver-
ified that the partial sums of A¢(P;¢ o &)(x) are uniformly LP-bounded for any p > 1.
Now P; = e‘”"z(D), and therefore we get from

BIAAAIPEA D] = @) D e (pelk + K)pitk)e ™ pi(kELER)ER)]

k,k'ez?
— _ 6 __ ~
= @n)72 ) peOpik)e M pik) = == 3 pilkyp(kye .
kez? ke72

For |i — j| > 1 we have p;(k)pj(k) = 0 and therefore
Qt =EB[(Pi& o &)(x)] = (2n)72 Z Z Pi(k)pj(k)e_”k'Z - 2n)2 Z e—t|k|2,

kez? i,j kez?

while E[(P;& o &)(x) — A_1(P¢& 0 &))(x)] = 0. =
Exercise 12 Let ¢ be a Schwartz function on R? and set

40 = (2 p(n) + £)) = [ (e = y)en)dy = Y (€, nptn 2k =)
kez?
for x € T2. Write Zp2¢(z) = fRZ e’i<z”‘>(p(x)dx. Show that
E[(Pr&n 0 £)(0)] = E[A1(Pi&y 0 £,)(x)] = 2m) 2 ) e W Fagp(k/m)2.

kez?

Hint: Use Poisson summation.
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The diverging time integral motivates us to study the renormalized product X o & —
fo gsds, where fo gsds is an “infinite function”:

Lemma 20 Set ,
(Xo£)) = [ (Puog - gds.
0

Then E[”XOEHZT%ZV—Z(TZ)] <ooforally <1,p 21, T > 0. Moreover, if ¢ is a Schwartz

function on R? with [ @(x)dx = 1, if & = @ * & with ¢, = n*@(n-) for n € N, and
Xu(t) =[5 Pi&udt, then

)}I_I;rolo E[||X<> CE - (XI’I o éi’l - fl’l)llgT(gZy—Z(TZ)] = 0
for all p > 1, where for all x € T?

fu(t) = B[Xn(t, x)En(x)] = B[(Xn(t) © £4)(x)]

_ | Fragp(k/m)? kP _
=(2n)™? 1-e ) 4 (2m) 2t
(2m) kEZZZ\{O} (e en

14
Crig?r-2
vergence of (X, o &, — f,) to X o & is shown by applying dominated convergence, and

we leave it as an exercise. Let t > 0 and define E; = P;£ o & — g;. Using Gaussian hyper-
contractivity we will be able to reduce everything to estimating E[|A;Z;(x)|?] for £ > —1
and x € T2 Lemmayields Argr = 0 = E[A¢(Pi& o &)(x)] for £ > 0 and x € T?, and
A_1gi = g1 = E[A_1(Pi& 0 £)(x)], so that E[|A¢E,(x)[*] = Var(A¢(P:& o £)(x)). We have

Proof To lighten the notation, we will only show that E[|| X ¢ || ] < . The con-

AdPiE0 )(x) = ) ep(x)pe(k)F(Pr& 0 E))(K)

kez?
=@ Y D e ®pe + k) pitkn)e N E k) pj(ka)E(Ka).

kl,k2€Zz |i—j|<1
Hence

Var(A¢(Py& 0 £)(x))
=02 Y 3 Y D e @pelks +k)pilkne ™1 (k)

Kk Kk li=jl<1|i7=]'I<1

X ey i (V)pe(ky + Kppir(kp)e™ 5P p (k) Cov(€ (k) k), E(kDEKD)),

where exchanging summation and expectation can be justified a posteriori by the uni-
form LP-boundedness of the partial sums. Now Wick’s theorem ([Jan97], Theorem 1.28)
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gives

Cov(&(k1)E(ka), E(kE(KRY) = BIE(Kk)E (k) E(kD)E(K)] = BIE(k1)E (k) IELE(K))E(KS)]
= E[E(k)E(k)IELE(KDER)] + ELE (k) ERDIELE (k2)E (k)]
+ E[E(k1)E(RYIELE (k2)E (kD)1 = ELE(k1)E (k) JE[E (KD)E(K))]

= (Oky+k; =00k, +k5=0 + Oy +k; =00k, +k;=0),

and therefore
Var(A((Pi& o &)x) = @)™ Y > > Teilesiphlkn + ka)pilkn)p; (ko)
ki, k i—jl<1|i'—j’|<1
x [pir(kn)py (ke 117 4 pi(ka)pj(kyye TP HaFY,

Now there exists ¢ > 0 such that e 2K < ¢=t¢2" forall k € supp(p;i) and for all i > —1.
In the remainder of the proof the value of this strictly positive ¢ may change from line

to line. If i — j| < 1, then we also have e~k < ¢~12" for all k € supp(p;). Thus

Var(A¢(Pt& o &)(x))
_ 2i
< Z I[£’SZ‘]L‘~]‘~1"~]” Z ]Isupp(pg)(kl +kZ)Esupp(pi)(kl)]l'supp(pj)(kZ)e e
ij i’ k1,ko
2( 2(
2in2€ ,—tc2% 2_ — 2 2_ —tc22t
sZzze stZe s et
izl IRPS4

where we used that 2% < ete=c2 for all ¢ < c.
t
Consider now X ¢ &(t) = fo H.ds. We have forall0 < s < ¢

Bl X0 &(t) = Xo &)}, 1= ) 2@ fT EllA(X 0 &(t) = X 0 &())(x) ¥ ]dx.
t

ZP ZP

Since the random variable (X ¢ £(t)— X ¢ £(s))(x) lives in the second non-homogeneous
chaos generated by the Gaussian white noise &, we may use Gaussian hypercontractivity
([Tan97[], Theorem 3.50) to bound

E[|Ac(X 0 &(t) = X 0 &(s))(0)*] 5 EB[|Ac(X 0 E() = X 0 E(s))()1¥

E
< f [18cE (olldr)

But we just showed that

E[IAcE,(0)|] < E[JAE ()] = (Var(Ae(Pr& 0 £)(x))'/
< p~12oC —5rc2 < p1/2pt =12
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(changing again the value of c), and therefore

(E[I|X<>c§(t)—Xoé(s)HZ%’Z;])l/zp (> (2"<2V‘2>ft pU2glere2 g ) 7)1

S

¢
t
< 2{’(2;/—1)[ r—l/ze—rczﬂ’dr
227,
t &)
X 2
< (f r_l/Zf (ZX)zy_le_rczz' dxdr) g
s -1

The change of variable y = 1/r2* leads to

t [eS)
-1/2.,-2y-1)/2 2y-2 —cy? 2p
< ( j; ey ﬁ Y% dydr) .

For y > 1/2, the integral in y is finite and we end up with

t
2
<([ ey spe-spros
S

provided that y € (1/2,1). So for large enough p we can use Kolmogorov’s continuity

criterion to deduce that E[|| X ¢ & ||2p 2y2] < ooforall T > 0. The claim now follows from
T 2p,2p

Besov embedding, Lemma O

Combining Theorem [/]and Lemma 20} we are finally able to solve driven by a

space white noise.

Corollary 2 Let ¢ > Oand let F € Ci“ and assume that ug is a random variable that almost

surely takes its values in €27 for some y € (2/3,1) with (2 + €)y > 2. Let & be a spatial white
noise on T2. Then there exists a unique solution u to

gM:P(M)OEI M(O):MO,

up to the (possibly finite) explosion time T = (1) = inf {t >0: ||M||@t)' = oo} which is almost
surely strictly positive.

If (pn) and (&) are as described in Lemma 20}, and if (u ,,) converges in probability in €
to ug, then u is the limit in probability of the solutions u, to

Luy, = F(“n)ogn/ un(o) = Upn,0.

Remark 9 We even have a stronger result: We can fix a null set outside of which X ¢ £ is
regular enough, and once we dispose of that null set we can solve all equations for any
regular enough 1o and F simultaneously, without ever having to worry about null sets
again. This is for example interesting when studying stochastic flows or when studying
equations with random u( and F.

The pathwise continuous dependence on the signal is also powerful in several other
applications, for example support theorems and large deviations. For examples in the
theory of rough paths see [EV10].
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6 The stochastic Burgers equation

Let us now get to our main example, the “KPZ family” of equations. We concentrate
here on the stochastics Burgers equation sBg, but essentially the same analysis works
for the xpz equation. We can also treat the heat equation with the same arguments,
although in that case we need to set up the equation in the right way by applying a
suitable transformation.

Recall that the stochastic Burgers equation sBe is

Lu = deu® + 9y, u(0) = uy, (40)

where u : [0,00) X T — R, & is a space-time white noise, and d, denotes the spatial
derivative. As we argued before, the solution u cannot be expected to behave better
than the Ornstein—Uhlenbeck process X, the solution of the linear equation .ZX = d,¢,
and as we saw in Section X(t)is for all + > 0 a smooth function of the space variable
plus a space white noise. By Exercise |11} the white noise in dimension 1 has regularity
€127, Thus X € C¢ %7, and in particular u? is the square of a distribution and a
priori not well defined.

What raises some hope is that in Lemma [2| we were able to show that dy X2 exists
as a space-time distribution. So as in the previous examples there are stochastic can-
cellations going into dyX?. The energy solution approach was designed to take those
cancellations into account in the full solution u, but while it allowed us to work under
rather weak assumptions which easily gave us existence of solutions, it did not give us
sufficient control to have uniqueness of solutions. On the other side, a suitable paracon-
trolled ansatz for the solution u will allow us to transfer the cancellation properties of
X to u and it will allow us to construct d,u? as a continuous bilinear map, from where
existence and uniqueness of solutions easily follows.

6.1 Structure of the solution

In this discussion we consider the case of zero initial condition and smooth noise &,
and we analyze the structure of the solution. Let us expand u around the Ornstein-
Uhlenbeck process X with X = d,¢&, X(0) = 0. Setting u = X + u>!, we have

L1 = 94(u?) = Ix(X2) +20:(X1Ph) + A (1)),

Let us define the bilinear map

B(f,g) = Jox(fg) = fo P_dy(f(5)g(s))ds.

Then we can proceed by performing a further change of variables in order to remove
the term dy(X?) from the equation by setting

u=X+B(X X)+u>2 (41)
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>2 satisfies

LuP? = 20.(XB(X, X)) + dx(B(X, X)B(X, X))
120x(X12) + 20x(B(X, X)u>2) + e (u>2)2).

Now u
(42)

We can imagine to make a similar change of variables to get rid of the term
20x(XB(X, X)) = ZB(X, B(X, X)).

As we proceed in this inductive expansion, we generate a number of explicit terms,
obtained by various combinations of X and B. Since we will have to deal explicitly with
at least some of these terms, it is convenient to represent them with a compact notation
involving binary trees. A binary tree 7 € 7 is either the root e or the combination of
two smaller binary trees T = (7172), where the two edges of the root of 7 are attached to
71 and 7, respectively. For example

(e0)=V, (Vo)=¥ (=% (vv)=V
Then we define recursively
X*=X, X" =B(X", X"®),
giving
XY =B(X,X), XY=B(X xY), x¥'=Bxx%, xY=BXxYXxY),
and so on. In this notation the expansion (@I)-(42) reads

u=X+XxX"+u>?, (43)

1?2 =2XY + XV +2B(X, u”?) + 2B(XY, u??) + B(u>?, u>?). (44)

Remark 10 We observe that formally the solution u of sBe can be expanded as an infinite
sum of terms labelled by binary trees:

U= Z ()X,
€T

where ¢(7) is a combinatorial factor counting the number of planar trees which are iso-

morphic (as graphs) to 7. For example c(e) =1,c (V) =1, ¢ (‘(l) =2, C(Y<l) =4,c (‘0’) =1
and in general c(7) = X1, re7 Lt rp)=cC(T1)c(72). Alternatively, we may truncate the
summation at trees of degree at most n and set

u= Z c()X" +u>",

€T ,d(t)<n
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where we denote by d(7) € Ny the degree of the tree 7, given by d(e) = 0 and then
inductively d((t172)) = 1+ d(t1) + d(12). For example d (V) =1, d (Vl) =2, d(Y(l) =3,
d (W) = 3. We then obtain for the remainder

un = > c(t1)e(t) XM
71,72 1 d(t1) < n,d(12) <n
d((t172)) 2 n

+ Z o(T)B(XT, u>") + B(u>", u>"). (45)

T:d(t)<n

Our aim is to control the truncated expansion under the natural regularity assump-
tions in the white noise case, X € C¢~1/2~. Since contains the term B(X, u>") which
in turn contains the paraproduct Jd,(#>" < X), the remainder u>" will be at best in
C%'/?~. But then the sum of the regularities of X and u>" is negative, and the term
B(X, u?") is not well defined. We therefore continue the expansion up to the point (turn-
ing out to be u>%) where we can set up a paracontrolled ansatz for the remainder, which
will allow us to make sense of d,(X o #”") and thus of B(X, u>").

6.2 Paracontrolled solution

Inspired by the partial tree series expansion of u, we set up a paracontrolled ansatz of
the form
u=X+xXV+2x¥+uQ,  uf=u<Q+uf, (46)

where the functions #’, Q and u? are for the moment arbitrary, but we assume u’,Q €
27 and ut € £?, where from now on we fix y € (1/3,1/2). For such u, the nonlinear
term takes the form

Ix? = (X2 +2XVX + (XY)? +4X¥X) + 29, (u2X)
+20,(XY (2 +2X9)) + 9. (uQ +2XY)), (47)
which gives us an equation for u9:
Lu = 9.(XV)? +4XYX) + 29 (1°9X) +20:(XY (2 +2X ) + 9 (u? +2X9)?)
= XY 142X 120, (u°X) + 20:(XY (U + 2XY)) + 9:(uQ +2X¥)2).  (48)

If we formally apply the paraproduct estimate Theorem 3| (which is of course not possi-
ble since the regularity requirements for the resonant term are not satisfied), we derive
the following natural regularities for the driving terms: X € Ce~ Y2, XV e C¥,

XY e P2= XY" e Y2~ and XV e £ In terms of ¥, we can encode this as
Xece’l, xVece? !, xVeywr, XYeywr, X¥eg¥,

Under these regularity assumptions the term 29, (XY (12 + X)) + 0, (u? + X¥)?) is well
defined and the only problematic term in is dx(u9X). Using the paracontrolled
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structure of u9, we can make sense of d,(1#9X) as a bounded operator provided that
Qo X € C¢? ! is given. In other words, the right hand side of is well defined for
paracontrolled distributions.

Next, we should specify how to choose Q and which form u” will take for the solution
u2. We have formally

2uQ = X% 1 4.2X% 120, (u°X) +20:(X¥ (U2 + 2X) + 9. (uQ + 2X¥)?)
= 40,(X¥X) + 209, (u9X) + CE? 2
=4X¥ <9, X +2uR <9, X + CEY 2,

where we assumed that not only . XY e C%772, but that 8x(XY' 0 X) € C€? ! (which
implies .2 X% € %72, but also the stronger statement £XY - XY <9,X € CEV2).
By Theorem @ u? is paracontrolled by J(9,X), and in other words we should set Q =

J(9:X). The derivative u’ of the solution 1< will then be given by u’ = 4XY +2uQ.
Unlike for rpam, here we do not need to introduce a renormalization. This is due to
the fact that we differentiate after taking the square: to construct u?, we would have to

subtract an infinite constant and formally consider u°2 = u? — oo, or at the level of the

approximation u2 — ¢,,. But then

0,1°? = lim o'?x(u% —cy) = lim 8xu% = du’.
n—-00 n—-o00

So we obtain the following description of the driving data for the stochastic Burgers
equation.

Definition 7 (sbe-enhancement) Let y € (1/3,1/2) and let
Xpe CCEV I X CEY I x L7 x L2 x CE I x Ce?!

be the closure of the image of the map Ogpe : C(Ry, C¥(T)) — Xepe given by

Oue(0) = (X(6), X¥(6), X¥(8), X¥ (), (XY 0 X)(6),(Q o X)(8)), (49)
where
X(0) = J(9:0),
xY(0) = B(X(0),X(0)),
xX¥%0) = B(XY(0),X(0)), (50)
xY(0) = B(XV(0),XV(0)),

Q(O) = J(9xX(0)).

We will call Ogpe(0) the sbe—enhancement of the driving distribution 0. For T > 0 we define
Xspe(T) = Xspeljo,r) and we write ||X||x,,.(r) for the norm of X in the Banach space C1%7 ™! x

Crer1 xny XXTZV XCr€? "1 x Cr€*r~1. Moreover, we define the distance d x,, r)(X, X) =
1 = Xlx,,.(7)-

For every X € Xy, there is an associated space of paracontrolled distributions:
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Definition 8 Let X € Xg,e. Then the space of paracontrolled distributions 27 (X) is defined as
the set of all (u,u’) € CE€V~1 x L7 with

u=X+XV+2xV+u' <Q+ut,
where u* € £*. For T > 0 we define
el = 11l + NuFllcyezr-
IfX € Xppe and (i1, i1') € 27 (X), then we also write

dgr(u, i) = |l =@ gy +llu? = 2|, 2.

We now have everything in place to solve s driven by X € Xgpe.

Theorem 8 Lety € (1/3,1/2). Let X € Xgpe, write 0,0 = X, and let ug € €. Then there
exists a unique solution u € 27 (X) to the equation

Lu =0 u’ + 0,0, u(0) = uy, (51)

up to the (possibly finite) explosion time T = T(u) = inf {t >0: ||M||@t)' = oo} > 0.

Moreover, u depends on (1o, X) € €%’ X Xepe in a locally Lipschitz continuous way: if
M, T > 0 are such that for all (uo, X) with |luoll2y V IXllxy.r) < M, the solution u to the
equation driven by (ug, X) satisfies ©(u) > T, and if (i, X) is another set of data bounded in
the above sense by M, then there exists C(M) > 0 for which

dgy(u, i) < C(M)(|luo — figllay + dx,. ()X, X)).

Proof By definition of the term d,u?, the distribution u € 27(X) solves if and only
if uQ = u — X — XV - 2X Y solves

ZLu? = XY +49,(XVX) + 20, (u2X) + 20,(XV(u? +2X ) + (12 +2XV)?)

with initial condition #9(0) = uo. This equation is structurally very similar to ram (23)
and can be solved using the same arguments, which we do not reproduce here. O

For this result to be of any use we still have to show that if £ is the space-time
white noise, then there is almost surely an element of X associated to d&. While
for pam we needed to construct only one term, here we have to construct five terms:
XV, XY’, XV, XYo X, Qo X. For details we refer to [GP14]. Alternatively we can sim-
ply differentiate the extended data which Hairer constructed for the KPZ equation in
Chapter 5 of [Hail3]].

The same approach allows us to solve the KPZ equation .Zh = (d,h)°? + &, and if
we are careful how to interpret the product w ¢ ¢, then also the linear heat equation
Zw = wo&. In both cases the solution will depend continuously on some suitably
extended data that is constructed from & in a similar way as described in Definition m
Moreover, the formal links between the three equations that we discussed in Section[4.2]
can be made rigorous. These results will be included in [GP14].
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