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The KPZ equation

Formally, the KPZ equation is written

ou=0*u+ (Ou)*+¢ >0, xeS' :=R/27Z.

¢ is arandom external force. It is not a function but a Schwartz
distribution (like the derivative of a continuous non-differentiable
function).

This equation was introduced in 1986 by physicists as a model for the
fluctuations of a randomly growing interface and later recognised as an
universal object, believed to be the limit of many discrete models in
statistical mechanics.

u is expected to be similar to a Brownian motion in x, to dyu is not a
function but a Schwartz distribution and its square is ill-defined.
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Regularization of the noise and stability

Let us consider a smooth &, that converges to £ in some sense as € — 0.

Ot = ({9%% + (8xu5)2 + &..

We are interested in the following stability problem: find topologies on
& and u, such that

1. (Probabilistic step)
&. converges to the space-time white noise as € — 0

2. (Analytic step)
& — u is continuous.
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Analytic step: Products of random distributions

The analytic step involves a treatment of products of random Schwartz
distributions, like the term (0,u)>.

The theory says that under certain conditions on the SPDE (a
subcriticality assumption in Hairer’s terminology, physicists would say
that the theory is super-renormalisable)

Us = ﬁ(gl(fg), v ,gk(fa))

where .7 is a continuous functional and {gi, . .., gk} are explicit
polynomial functionals of the smooth random function &.

For instance, if we add the term (0,u)? to the equation, it is not
subcritical anymore and the theory fails to apply.
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The probabilistic step: Renormalisation and convergence

In the probabilistic step we need to prove that {g;(£.)} converge in
probability.

However the {g;(-)} are not continuous with respect to the very weak
topology we try to impose on £. Convergence needs to be proved on
each term separately.

In fact, some of the {g;({)} fail to converge. This is a structural
problem. So what?
Some of the g;(£.) need to be modified (renormalised): we want to find

{87 (£2)} which converges still retaining some link with {g;(&:)}-

If we can do this, i = (g5(&:), ..., 8%(&:)) converges to a
renormalised solution.
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Renormalisation of KPZ

The probabilistic step contains an additional fundamental element: the
renormalisation procedure. For instance, in the case of the KPZ
equation, the solution u. of

Ote = a;%us + (836”5)2 + 5&
does not converge as € — 0. It is necessary to define
aﬂzs = 83125 + (axas)z - Cs + gs

where C. — +o0 in order to have a convergent function it as € — 0.

The term (8xﬁ5)2 — C. converges to the renormalised square of O,u.
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Variables, multi-indices, monomials, derivatives

We use variables for d > 1
x,y,zERd, k,i e N
For a multi-index k € N we define
k| == ki + -+ + kq.
For k € N we define monomials
= xll<l . -xs"
with homogeneity |k| := ky + - - - + kg.
For k € N? and p € C*®(RY) we set

ol Oka
o) = — - ———p(x).
o) = )

With these notations, in what follows one can (almost) forget that d is
not necessarily equal to 1.
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Abstract Monomials

We introduce symbols Xi, ..., X; and
x0:=1, xt=x...x4¥  keN
and the evaluation operators
ILX“(y) = (v —x)".

Note that
LX) < Cly—x|*,  xyeR
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Holder functions and abstract Taylor series

By definition, f € C7, v € Ry \ N, iff

100 = 3 P (e, ) < Clly -

i<~

We associate to f the abstract Taylor series

Fx) = Z 9'f (x) X

i!

li| <~y
This is equivalent to x — (9'f(x), |i] < 7).

Then : ILF(x)(y)= > (%;(x) (y—x)'

li|<~

f(x) = ILF(x)(x), (reconstruction)

trivial in this case.
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The function f(y) := (y — z)X has the abstract Taylor series
k k—iyi k
Fo) = 3 (M) — = (e -
i<k \!
and in particular F(z) = X*. We define
k o
TX=X+x—2)f= > (z) (x — 2)F X"
i<k

I'y; is a rule to transform a Taylor sum around z in one around x.

This definition satisfies the simple properties ', I'y, = I'y;, I'y, = Id,

Hz = erxu |szXk - Xk| < ka ersz _XkHi < CHx - ZHk_i'
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Holder functions

Tof € C7,v € Ry \ N, we associate

F(x) = Z 9'f (x) xi

; i!
li| <~

Then

F) - TaF@) = ¥ 5 (8’)‘(36) -y e <x—z>f)

lij<y ™ 1<y =il

and in particular f € C7 iff &f € C'~Vl for all |i| < ~, i.e.

||F(x) - F)cz F(Z)H, < CH)C* Z”'7_|l'|‘
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Holder functions

Tof € C7,v € Ry \ N, we associate

o' :
Fx)=3Y f: '(x) X',
i<y 7
Then

F) - TaF@) = ¥ 5 (a7<x> -y e <x—z>f)

lij<y ™ 1<y =il

and in particular f € C7 iff &f € C'~Vl for all |i| < ~, i.e.

||F(x) - F)cz F(Z)H, < CH)C* Z”'7_|l'|‘

We want to add to this classical framework generalised monomials:
these will be random (Schwartz) distributions.
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Schwartz distributions

The Schwartz space or space of rapidly decreasing functions on R? is
S(RY) :={p € C¥(R) : pas(p) < +00, Yo, B € N}
Pas(p) = sup [X*@p(x)|, @, eN.

xeR4
A tempered (or Schwartz) distribution is a linear functional

T : S(RY) + R such that there exist a constant C and
0417,31, cee 7ak7ﬁk € Nd S.t.

k

IT(p)| < C> pays(p), Ve eSRY.
i=1

We write T € S’(R?). Examples:
» Iff € IP(RY),p > 1, then T(p) := [ of dx
» For any finite measure 1 on RY, T(¢) := [pdpu
» For any finite measure ;2 on RY and o € N¥, T(¢) := [ 0% dp
» Linear combinations of the above examples
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Generalised monomials

We consider a class of symbols 7" 2 {X* k > 0} representing
generalised monomials. We associate to each 7 € T a degree or
homogeneity :

VreT, I7| € R,

with the assumption that [X*| = |k| = k; + - - - + kg.
We want to endow 7 with operators (I, I',.) such that:

1. II, associates to each symbol 7 € T a (random) distribution on
R¢ whose local regularity around each point x is no worse than the
homogeneity |7|; informally:

L)< Clly =+, xyeR

2. T'y; is arule to transform an abstract Taylor sum around z in one
around x.
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General models

A model of T is given by a couple (I, I'y;) such that
» forall x, I, : 7+ S'(RY) and for all p € C*(RY)

L7 (ps)| < COIT,

where ¢, 5(y) == 64 (%), 0> 0.

» forallx,y,z, I'x; : (T) — (T) is such that I'y, = Id,
ryry, =TIy and

Ty — 7| < |7], ITem — 7lla < Cllz — x|, o < |7].

» for all x, z: 1T, = II,T',,.

Very important: (II,,T";) is in general random (measurable with
respect to £ or &), T is fixed and deterministic.
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A 1-dimensional example

Let us add a symbol W to 7. Let (B;);cr be a two-sided Brownian
motion. Then a possible choice for II, and I'y; is

IL,W(y) = By — B, LW =W+ (By — B)1.
1
|W| = 3 € =!aq, [ILW(y)| = By — Bx| < Cly — x|*

LT W(y) = IL(W + (B — B)1)(y) = By — By + By — B;
=By — B, = II,W(y)

T2 W — Wllo = |Bx — B| < Clx —2[*7°
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A 1-dimensional example

Let us add yet another symbol = to 7. A possible choice for II, and
I'y; is for ¢ € C°(R)

[

ILE(p) = /R ¢(y)dBy = — /R ©'(y) (By—By)dy, T E=

The homogeneity of Zis |Z| = o — 1 = —1 —e. It is easy to show
that the required assumptions are satisfied:

LS =| B - 852 (Y5 ) < et
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Holder functions

For v > 0 we say that F € D" if F takes values in the linear span of
the symbols with homogeneity < « and for all o < 7y

[F(x) = Taz F(2)[lo < Cllx — 2|77

where || - || is the norm of the projection onto the span of the symbols
with homogeneity equal to «. (Note that « is not restricted to N
anymore!).

The inspiration comes from Gubinelli’s theory of controlled rough
paths.
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A 1-dimensional example

Let o : R — R be smooth. Then
|o(Bx) — 0(B;)| < C|By — B;| < C|x — z|“.
This means F(x) = o(By)1 defines a function F € D?, since
F(x) —T';F(z)

IF(x) = TeF(2)]lo < Clx —2]*7°

Can we go beyond a?
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A 1-dimensional example

By the Ito formula
X 1 X
o(B,) = o(B.) + / o'(B) 4B+ 5 [ 0" (B du.
Z Z

By a (nontrivial) result similar to the Kolmogorov criterion and due to
M. Gubinelli

< Clx — 7>

/Z (o (Bu) — o' (B.)) dB,

Then
|0(Bx) — 0(B;) — 0’ (B;)(Bx — By)| < Clx — 2>

Lorenzo Zambotti (LPMA, Univ. Paris 6) 2-6 February 2015, Bicocca University



A 1-dimensional example

Then let us set
G(x) = o(By)1 + o' (B)W.

Then
G(x) - szG(Z) =
= [0(By) — 0(B;) — 0'(B;)(By — B;)| 1 + (0/(By) — 0/ (B,))W
and G € D> :
IG(x) —TG(2)lls < Clx—2**77, B e{0,a}.

Note that:
1. F is atruncation of G

2. If ¢ € CP with 8 > 2q, then H(x) = (0(By) 4 &)1 4 o/ (B)W
defines a function H € D2
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Holder functions

In the general case, for v > 0 we say that F' € D7 if F takes values in
the linear span of the symbols with homogeneity < v and for all o < 7y

1F(x) = Taz F(2)[lo < Cllx — 2|77

where || - || is the norm of the projection onto the span of the symbols
with homogeneity equal to .. (Note that « is not restricted to N
anymore!).

Given a Taylor expansion F(x) around each point x, can we find a
function/distribution f which has this expansion up to a remainder?

Itf€C,vyeRy \Nyand F(x) = 3 <, al{fx) X', then F € D and
f(x) = I F(x)(x). But in general IL,F(x)(-) is a distribution and we
can not compute it at x.
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The reconstruction theorem

Reconstruction Theorem. For all v > 0 and F € D7 there exists a
unique distribution RF on RY such that

IRE(y) — ILF(x)(y)| < Cllx —y||”
or, more precisely, such that

’RF(@x,é) - HxF(x)(pr,é)‘ < CH.

Again for all ¢ € C(RY), ¢, 5(y) =69 (%), 5> 0.
II.F(x)(-) being a distribution, we can not set RF (x) = II.F(x)(x).

The proof is based on Wavelets Analysis, like for Paraproducts in
Massimiliano’s course.
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How to define a, dB,

Let us consider a continuos process ay, x € R, and a deterministic
¢ € CX(R). Can we define [ ¢(x) a, dB, pathwise?

Idea: use the reconstruction theorem!

If we define F(x) := a,=
then II.F(x)(y) = axdB,
and formally  RF(x) = II,F(x)(x) = a, dBy.

But we need F € D7 with v > 0.
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How to define a, dB,

F(x) := a,E, F € DY with v > 0 depends on
F(x) =T F(z) = a,E — I'ya,E = (ay — a;)=
satisfying ||F(x) — ', F(2)|); < Clx — 2|7 forall i < 7 i.e.
la, — a,| < Clx — 71— (IBl=a—-1=-1/2—¢).

Then F € D7 withy > 0ifa € OV 1" withy + 1 —a > 1/2 +¢.
This is in fact a Theorem due to Young (1936).

However this is unsatisfactory since it rules out SDEs like
X, = Xo + Jy o(Xy) dB;.
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The symbol for B, dB,

Let us add another symbol =W to 7.

ILEW (¢ / ©(y)(By — By) dB, (Ito integral )
—— [ B = BP - =)@ 0) &

I'.EW = Z(W + (B, — B,)1) = EW + (B, — B.)=
) dB, +/ )(B — B.) dB,

W] = |=| + [W| =20 — | = —2e.

MLEWons) = | [ 5B - B -0 -2)52 (255) o

S C(S—ZE
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How to define a, dB,

Let us now try F(x) := a,= + byZEW,

F(x) — T'wF(z) = (ay — a; — b;(By — B,))= + (by — b)) ZW
and we must have ||F(x) — ', F(2)||; < Clx — 2|7 i.e.

jay —a; = b:(B: —B;)| < Cle—2"™17% (2| =a -~ 1)

|by — b,| < C|x — 77172 (|IEW| = 2o — 1)

Lorenzo Zambotti (LPMA, Univ. Paris 6) 2-6 February 2015, Bicocca University



How to define a, dB,

If we set A(x) := a,1 + bW, then
A(x) —T;A(z) = (ax — a; — b(By — B;))1 + (by — b,)W
we know from the previous slide that
lax — a; — b.(By — B;)| < C|x_Z|7+l_a (1] =0)

by = b| < Clx =212 (JW] =)

and this means A € DY+1=_ Then
AeD'TI=% s F=AZ e D".

Note that |=| = a — 1.
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How to define a, dB,

Letus fix o €]1/3,1/2[and set v = 3a — 1, so that y + 1 — oo = 20cv.
We assume that A(x) := a,1 + b,W belongs to D>°.

Moreover x — H(x) := Z belongs to D> since H(x) — I';;H(z) = 0.
Note that RA = a, RH = dB. We have shown that

A* H(x) = F(x) = a,Z + byZ2W

belongs to D3*~! with 3a: — 1 > 0. The reconstruction theorem yields
RF =: a,dB, such that for all x

'/ cpx,(;adB—ax/ pry(;dB—bx/ x5 (B—By)dB| < coel,
R R R

This is a result due to M. Gubinelli (2004).
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An exercise

Let~ > . Forall U € D7 with

set

Qs U(x) = Z ur(x)7T

ITl<B
and show that Q[; U e DP.

If moreover v > (8 > 0 then show that RU = RQ[; U.
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Another exercise

Suppose that 0 < o < <y, U € D7 and U takes values in the linear span
of {X* k} UV with

7] > «a, VTev.

Let V(x) be the projection of U(x) on the linear span of {X*, k}.

Then show that
1. VeD%,
2. the function x — u(x) := (U(x), 1) is in C*
3. RU=RV =u.

Lorenzo Zambotti (LPMA, Univ. Paris 6) 2-6 February 2015, Bicocca University



Some notations: the heat kernel

For x = (x1,...,%s) € RY we define the heat kernel G : RY — R

1 R
G(x) = L(y50) ———2 €Xp <_l2xddl> '

(27mxq) 2

Given k = (ky,...,kg) € N¢ we define

o O
GO (x) = = =——G(x).
) 8x]f' 8de )

Lorenzo Zambotti (LPMA, Univ. Paris 6) 2-6 February 2015, Bicocca University



Parabolic scaling

The heat kernel has a very important scaling property:
1
G(5X1, ce ,5xd_1,52xd) = g G(xl, R ,xd_l,xd), 6>0

which is associated with the scaling s := (1,...,1,2).

This motivates the following definitions:
e = ylls == Per = yil 4+ + a1 = ya1| + lxa — yal %,

lkls := ki + -+ + ka—1 +2kg, k€N
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Regularity Structures

A regularity structure 7 = (A, T, G) consists of the following
elements:

» Anindex set A C R such that 0 € A, A is bounded below and A
has no finite accumulation point

» A graded vector space T = @4 T, with each T, a Banach
space. Furthermore T ~ R1.

> A structure group G of linear operators acting on T such that
VIeG acAacT,

T'a—ac @ Tg.
B<a

Furthermore I'l =1 forallT € G.
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A model of .7 = (A, T, G) with scaling s is given by a couple
(11, T'y;) such that

» forallx, IT, : 7 — S'(R?) and for all ¢ € C°(RY)
‘HXT((Px,é)l < C(sz, V71 € Tg

where (o, 5(y) 1= 041 (N5, datpn vigu ) 5 ),

» amap ' : RY x R? s G such that for all x,y,z, [, = Id,
Iyly, =Ty and

[T;m = 7lla < Cllz — fo—a’ VT e Ty

» for all x, z: 1T, = II,T',,.
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The reconstruction theorem

For vy > 0 we say that F € DY if F : R? Do~y To and forall v <
1F(x) = T F(2) 7, < Cllx —2fl37
where || - ||7,, is the norm of the projection onto T,.

Reconstruction Theorem. For all v > 0 and F € D7 there exists a
unique RF € S'(R?) such that

IRE(y) — ILF(x)(y)| < Cllx —yl|7
or, more precisely, such that

|RF(¢xs5) — IF(x)(¢xs)| < CO7.
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The mild formulation

Now, how can we use this formalism to solve SPDEs?

Let us go back to the regularized (unrenormalised) KPZ
Ot = a)%ua + (8xu5)2 +f(u£) + ga-

with an additional non-linear term, for f : R — R smooth.

Here everything is classical, and the solution is given by the fixed point
of the mild formulation

u:(t,x) = /[O,z]xSl Gi—s(x —) ((8xu5)2 +f(u:) + 55) (s,y)dsdy

(we assume for simplicity that u. (0, -) = 0).
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Lift ot the equation

Now we want to consider the equation

u: = G * ((8)(”5)2 +f(ua) + 68) s

build a regularity structure .7 = (A, T, G) with a model (II¢,1"), and
find a U. € DY = DY(I1%,T¢) such that

RU: = uc,

U. = K(2U. - 9U. + F(U.) + E)

v

K :DY s D72, R(KV) = G+ RV
P : DV DL R(2V) = O,RV
F:DV = D7, R(FV) =f(RV)
and finally there is the -

v

v

v
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How to build the regularity structure (A, T, G)

We shall need = € T. We also use the notation = = -
Let us write Up = 0 and (forgetting the non-linear term f (u))
U1 =Z(2U0, - 20U, + =).

Then
U=I(=5)=i

U =T((ZZ(2) +8) =T(V+9) =Y +1,
Us =Z( +2¢+V +-)

In this way we generate iteratively a list of symbols (trees):

TIVY YOS E
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Abstract Monomials

We define the following family F of symbols:
» 1,X,...,.Xg,2 € F
> ifr,..., 7, € FthenT -1, € F (commutative and associative
product)

» if 7 € FthenZ(7) € F and Zy(7) € F (formal convolution with
the heat kernel differentiated k € N times), with Z(X*) = 0

Examples: Z(Z), X"E7(Z), Z((T1(2))?), ="

To a symbol 7 we associate a real number |7 called its homogeneity:

= d+1
Els < =—— Kils=-=Xals =1, Xl =2, |1|=0

71 Tals = |Tls + -+ Talss [ Z(T)ls = |75 +2 — [K]s.

However F is far too large. We do not need =" for n > 2.
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Sub-criticality assumption

We consider a SPDE 0,u = Au + F(u, Vu, ) on R%. In the formal
expression for F:

» we replace by Z, with |E] = a < 0

» if @ + 1 < 0 then we associate to J;u a symbol P;, |P;| = a + 1,

i=1,...,d—1

» if & + 2 < 0 then we associate to u a symbol U, |U| = o + 2.
We assume that

1. The resulting expression is polynomial in the symbols.

2. Terms containing = do not contain other symbols, and all other
monomials have homogeneity > «.

Then we say that the SPDE is sub-critical.
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Examples of sub-critical equations

KPZ in 1 space-dim. (d = 2). Here a = |Z| = % — 4.
O = Au+F(u,Vu,8),  Fu,p,§) =p* +¢&.

Then the formal replacement gives F(U,P,=Z) = P> + =, |P| = a + 1,
|P?| =2+ 2 > a since a > —2.

If we modify the equation
Ou = Du+Fu,Vu,§),  Flu,p,§) =p*+&

Then the formal replacement gives F(U,P,=Z) = P> + =, |P| = a + 1,
|P3| =3a+3 < asince a < —3.

Then this class of equations is sub-critical for F(u,p,£) = p? + £ and
critical or super-critical for F(u,p, &) = p* 4+ &€,k > 3.
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Examples of sub-critical equations

Parabolic Anderson model. Here the space-dim. is 2 (d = 3) and € is
only a function of space. Therefore « = —1 — §. The equation is

O = Au+ F(u,§), F(u€) = u€.

Then the formal replacement gives F(u, Z) = u=, a+ 2 > 0.
Another important example is the <I>§ model: space-dim. is 3 (d = 4),
o= —% -9,

O = Au+ F(u,§), Flu,&) =u’ + €.
Then the formal replacement gives F(U, =) = U? + =,
Ul =a+2<0,|U% =3a+6>asince o < —3.

Then this class of equations is sub-critical for F(u, £) = u* + ¢ and
critical or super-critical for F(u, &) = u* 4+ &,k > 5.
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Construction of the regularity structure

Now we define a set 01 of monomials in the above symbols:
=y Pk € My if F contains a term £y (Du)* with m < m < 1,
n<mnk<k

For KPZ: F(”J%ﬁ) :p2+£’ mF: {Eapvpz}‘

For PAM: F(u,p,§) = ul, Mp={U,U=Z,E}.

For ®%: F(u,p,&) =u? + &, Mp = {U,U,U* E}.
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Construction of the regularity structure

We set Wy = Uy = P} = () and, given A, B C F, we also write
AB:={r7: T €A, T € B}.
Then, we define the sets W,, U, and P! for n > 0 recursively by

Wn = Wn—l U U Q(Un—lypn—laa) )
QeMy
U, = {x" U {Z(1) : TeW,},

PL={X"}U{Zi(r) : TEW,},
and finally

Fr= W, ulhy).
n>0
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Construction of the regularity structure

Lemma The set {7 € Fp : |1|s < v} is finite for all y € R iff the
SPDE is sub-critical.

Then we set A := {|7|s : T € Fr},
T, := T+ T |Tls = )

By the Lemma each T, is finite-dimensional (if non-empty).

The group structure G will be defined below.
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Another example: %

We have seen the family of symbols (trees) of KPZ.

For <I>‘3‘ we have with the notation

(1]

=, I@) =1, IEP=v, IEIIZE?’) =Y,
the list of symbols (trees)

T= <°,\V,V,Q%T;\{?,\\%XN,I,Y,\O,--) .
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The II, operators

We fix a (continuous) path of &. and define recursively (continuous)
generalized monomials II$7 around the base point x

IEXi(y) = (i —xi),  TIRE(Y) = &),
05 (r - 1) () = [[ 7 (),
i=1

L) = (GO0 - Y C=Y (G0 1z
lils <|Z(7)]s

Then we can interpret analytically |7 s

ITEr(y)| < Celly — x|,
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The I' operators

We have the recursive definition of I'Y, : 7+ T

LiXi=Xi+ (x—z), TLE=2  TL[[n=]]Twn
i i

(X +x—zy

DLT(r) =L(Ter) = Y, (ELeyTen) @)
lo<Irlot2-IK 4
On can check again the compatibility condition
Hi = Hirfcz
and the properties I', = Id, I';, ', =I'C,
7|4
Tor = 7le <Irley  ITr = 7lle < Cl =27, £ < Il
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Let for instance d = 2. Then v = |E|s = —3 — 6,0 > 0.

IEZ(E)(y) = (G*&)() — (G*&)(x)

The homogeneity is |Z(Z)|s = 5 — 9.

D=

IEZ(EZ(E)) () = G = (&

—

Gx&))(y) = G (&(G*&:)) ()

and the homogeneity is |Z(ZZ(Z))|s = 1 — 0.
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Setting 1= G  (£.(G * (&(G % &.))),
IEZ(ZZ(EL(2)))(y) = h(y) = h(x) = Oy h(x) (y1 — x1)

and the homogeneity i 1s 2 —9.

MLI(GE)0) =
= (60 =2 = 6l —2) = 8, Glx =) (1 =)
(@ —x1)§s( )dz

and the homogeneity is |Z(XZ)|s = 3 — 6.
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For 7 = Z(EZ(ZZ(Z))) the homogeneity i 1s — ¢ and (dropping ¢)

I;Z(EZ(2Z(Z)))(y)
=G # (G (£G* €))(y) — G * (£G * (G % £)) (x)
+ (31 = x1)(05, G+ £(x) (G * (£G % €) (x) — G #£(x)?))
+ (01 = x1)0x, G * (£G # £) (x)G * £(x)
— (1 = x1)0%,G * (£G * (£G % £)) (x)
—G* ()G * (G *£)(y) + G E(x)° G * £(y)
—G*(£G* &) ()G *£(y) — G E(x)’
+2G * £(x)G * (G x &) (x)
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For instance

and indeed setting h := (G * &)

ILTLI(E) () =h(y) — h(x) + h(x) = h(z) = h(y) — h(z)
=IEZ(E)()-

Another example:

ILZ(EL(E)) =(G * (&(G % &) (x) = G+ (&(G * &))(2)
(G #&e(z) = G+ &(x)G * &:(2))1
+ (G #&(x) = G+ &:(2)) Z(F)
+Z(EZ(E))
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Symbols with negative homogeneity

At the beginning we said that we would find, under a subcriticality
assumption on the SPDE, a representation

ue = F(g1(&), -, 8k(&:))

where . is a continuous functional and {gj, . .., g} are explicit
polynomial functionals of the smooth random function &..

Well, the functionals {g;(&.)} are given by
{Il°7, 7 € Fp, |7|s < 0}.

Each of these (finitely many) terms must be proved to converge
separately. If this is done, convergence for all other symbols (trees)
follows automatically by the theory.

However, before converging these terms must be renormalised.
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Classical multiplication

Consider f; € C,i = 1,2, with v > 0 and
[) =3 dx) 0 —xY +rilxy),  Jrixy)] < C@)lx =yl
J<i
Pointwise multiplication gives, setting v = v; A 2,

AL =3 3 d(x)d2x) (y —x)

<M 2<m
+r1(6,9) () = r2(x,y) + () (A () — rnlxy)) +rir(x,y)
=Y V() (y—xY +r(x,y),

i<y
with |r(x, y)[ < C(x)[lx — y|]7.

After all, if f; and f> are in C! then fif; is not necessarily in C? !
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Multiplication of modelled distributions

We say that F' € D)) if F € D7 and

F(x):Zaj(x)Tj, e Fr, |7]s >n.

Consider F; € ng, v >0,i=1,2.
By the reconstruction theorem, f; := RF; € §'(RY) satisfies

N; ) )
fiy) = @) Ler! (y) + rilx, y)
j=1

where |r;(x,y)| < C(x)||x — y||4" is a remainder.

Question: Can we define the product of f; and f»?
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Multiplication of Taylor sums

For F; € D) and f; := RF; € S'(R?),j = 1,2,

Ni . . Ni . .
=N "dr,  f) = d) LK) + i),
j=1 j=1

|ri(x,y)| < C(x)||x — y||4". Formal pointwise multiplication yields

Ni M

(fif)ly Zza“ (x) ILer]! ()L ()

Ji=1j=1
+ 11 (6 YILF2(x) (v) + r2(x, ) ILF1 () (y) + rir2(x, y).
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Multiplication of Taylor sums

AR =3 S d (e () Tl ()T )

J1=1j>=1
+ 11 (6, Y)ILF2(x) (v) + 126, )ILF1 (x) (y) + rir2(x, y)-

Now |r1 (x, y)ILF2 (x)(y)| < ||x — y||7""™. Therefore, setting
v = (1 +m) A (72 +m), we have

AR = > al(®ai ()L ()ILTE () + r(x,y)

|7_,'1|+|7_,'2|<'Y
with [r(x,y)| < C(x)[lx — 3.

However qu-{l (v) and HxTéz (v) are distributions, so in general
IL 7 (y)IL73 (y) is ill-defined.
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Multiplication of Taylor sums

This suggests the following definition:

(F1F2)(x) = Z ail (x)alz(x) TilTiz

|Til|5+|7}2‘s<7

and, by the reconstruction theorem, if 1 /> € D7 and v > 0O then
fi % fo == R(F1F,) satisfies

xR = Y a@a)I(d' %)) + rxy)

[Tt s+ e <y
and can be defined as the product of f; and f>.

If 11,7y and I, 7, are genuine distributions, their pointwise product is
ill-defined in general and therefore II, can fail to be multiplicative. In
the applications to SPDEs, it will be necessary to renormalise some of
these products.
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An abstract integration operator

We want to construct an operator K : DY — D72, 4 > 0,y ¢ N, s.t.
R(KV) =G« (RV).

This is given by the following formula: if V = >"_V.(x) 7 then
X) = Z Ve(x)Z(7

Ly X [ 69— y) (RV(y) - TEQ), V()

Ik|5<7+2

where Q' is the projection onto P, T
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An abstract differentiation operator

We want to construct an operator &; : D7 — D1, v >0, s.t.
R(Z:V) = 0i(RV).
Let us set first Z;7:
21 =0, 2 X; = 0jj, DiTi(T) = Liys,(7),

Di(1T) = TDT + TDiT.
Then we see that
;2 = Ol

and Z; : DY — DY~ is constructed by linearity.
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The lift of KPZ

We want to formulate the PDE in 1 space-dim.
Oh = Ah + (9:h)? + &
as a fixed point in D7
H=K((ZH)* +E).

What is the right v? Note that H is a linear combination of powers of X
and of Z(7) with |7|s > —3 — 6. Then ZH € D',' . Now

_1_5
2
(ZH)?* € D712 50 that we need v > % + ¢ in order for the r.h.s.
of the equation to be well defined. We choose v = % + 26.
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The lift of KPZ

We expect
H=hl+al+b¥Y +cX, +d¢+el € D3,

Then 1
PH =al +bY +cl+d¢+e € D

and

(ZH)? = >V + 2ab > + 2ac 1 + b* XY + 2bcY + 1 € D°
so that

K((ZH)* +E) = G* ((0h)* + &)1+ 1 +d* Y

+ G x ((0h)? + & — PTIV) X, + 2ab*¢ + 2ac{ € D2+
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The lift of KPZ

Weobtainthata =b=1,c=Hh,d =2,¢ =2/, ie.
H=hl+1+Y+HWXH +2¢+20<
= h1+Z(2) + I((T1(2))%)
+ WXy 4+ 2Z(Z) (E)(Z1(E))?) + 2K T(T1(B)).

The theory shows that this fixed point in D>+2 has (locally in time) a
unique solution, which converges if I1°7 converges for all |7]s < % + 0.

However, as we have already announced several times, the
unrenormalised family I1°7 fails to converge.
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Let (X, o/, m) be a o-finite measure space with atomless measure m.
A white noise on (X,.o/,m)isamap W : H := L*(X,m) — L*(Q,P),
where (2, .7, P) is a probability space, such that

> W(h) € A0, A1)

> E(W(h)W(h2)) = (h1, ha).
We can assume w.l.o.g. that .# = o(W(h),h € H). Then a classical

result says that there exists a natural isometry between L?(£2, P) and
the symmetric Fock space

H=PHi,  Hi=Lin(x" m®)=H>

sym
k>0

‘Hy is the k-th homogeneous Wiener chaos, and @jgk H; the k-th
inhomogeneous Wiener chaos.
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Multiplication of Wiener chaoses

We denote by I the natural isometry between H; and LSym (X, m®%).

If f € L?(X*) then we denote by f; its projection onto the symmetric
subspace Lsym(Xk) and I (f) := L(fs).

Then a formula (which we do not make more precise here) states that

L(NI.(3) e P H;

J<b+m

with explicit projections on each homogeneous chaos.
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An example: white noise on a point

If (X, m) is a point (0) with m = &y, then L*>(X, m) = R and
L2(Q,P) = L2(R, .4(0,1)), Hi = RHy, where (Hy)y are the Hermite
polynomials:
Hy =1, Hyy1(x) = 2xH,(x) — H),(x).
For instance H; (x) = x,

Hy(x)=x*—1, H3(x)=x>—3x, Hylx)=x*—-6x>+3

and the formula for the product is for m > n
- m Hynioi (-x)

The Wick product is defined by H,, © H,;, = Hy 4.
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White noise in R?

Let now (X, m) be R? with the Lebesgue measure. We denote
W(h) =: | h(y)&(dy).
R4

Then £ is a Gaussian field with the covariance function

E(€(»)E(x) = d(x —y).

It can be seen with the help of the Kolmogorov criterion that

x = W(Ljgy) is a.s. continuous, where [0, x] = [0, x1] X - -+ X [0, xg4].
Then it can be seen that for 4 € S(RY)

on
_(_1\d
W) = (~1) /Rd g W

and therefore £ is a well-defined random Schwartz distribution.
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Regularised white noise in R?

We set now

Yd—1 Yd

0= W) )= (M )

€ e g2
and p is a smooth mollifier. Recall:

IEXi(y) = i —xi),  TIEE() = &),
05 (r - ) (v) = [[ IR (),
i=1

L) = (GO0 - Y C=Y (G0 1z
lils <|Z(7)]s

By the previous discussion, I1°7 is a r.v. in the k-th inhomogeneous
Wiener chaos, with k the number of occurrences of the symbol = in 7.
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The II* operator

Let us set
HEXl(y) =Y HEE(y) :£€(y)a

n
I (71 - 7) () = [[ 7).
i=1
I°Ti(7) () = (GY * II°7) ().
This operator is the "stationary" version of IT¢.

Again, II°7 is a r.v. in the k-th inhomogeneous Wiener chaos, with k
the number of occurrences of the symbol = in 7.
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Divergence of the I1I° operator

Let us consider for instance 7 = V. Then

=) :/Rz P()(IFD(y) dy:/ P(y)(G' * &) (v) dy

RZ

which belongs to Ho & H,. It is easy to see that

BITV(p) = [ 601G pope  G)(O0)dy 2.

Instead we have that Var(II°V(y)) remains bounded.
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Renormalisation of I1¢

We now introduce a linear M, : T — T and [ :=TIIF o M_.. However
M. can not be arbitrary and must respect the structure we have built. In
particular, we expect I1° to have the following recursive construction:

A

EX(y) =y, 1FE(y) = &),
(71 1) (y) = [[ 0 7(y) — 10 [Le(my - )] (9),
i=1

T (r)(v) = (GY + T1°7) ().
We are modifying the products.

This imposes several restrictions on L. and M..
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The ﬁ\ operators

‘We then define

EX(y) = (i —x),  IEE0) = &),

A

B 7)) = [[1Er(y) — 1 [Le(mr 7)) (),
i=1

B0 = (@M - S O (G izr)
lils <|Zx ()]s

We have in general

[E7(y) # IEM.7(y), 7 (x) = IEM.7(x).

X

Lorenzo Zambotti (LPMA, Univ. Paris 6) 2-6 February 2015, Bicocca University



Renormalisation of KPZ

These matrices are of the form M = exp(— >_3_, C;L;), where the
generators L; are determined by the following contraction rules:

Lo:</’+—>1, L1:VF—>1, L2IWH1 L3:R@+—>1.

This should be understood in the sense that if 7 is an arbitrary formal
expression, then Ly is the sum of all formal expressions obtained from
7 by performing a substitution of the type {» — 1. For example, one
has

Lo’ =21, Ly =24,

etc.
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Renormalisation of KPZ

Theorem
Let M, = exp(— Y3, CZL;) be as above and let (II°, I') be the
corresponding renormalised model. Let furthermore H be the solution
to the lifted KPZ

H=K(2H)*+Z)

with respect to this model. Then, the function h. = RH solves the
equation

Ohe = h. + (8,he)? — 4C5 Dche + & — (C5 + C5 + 4C5) .
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DH =1+ +H1+2% 120/ < e D%
(ZH)*+E = Z+V+2C+ 20 1+ + 4G+ 20 Y +40 &+ (W) 1.
We recall the rules Lols = L1V = L) = L3¢ = 1,

Li¢=2{, L\¢(=21, Li¢=20+Y.
Then M. ZH = ZH — ACi{, (M.ZH)? = (9H)* — 8Ci{»

M.((ZH)* +E)
= (ZH)? +Z — C5(41 +4Y + 8 +4h'1) — C5 — C5 — 4C5
= (M.ZH)* + 2 — 4C5M.ZH — (C + C5 + 4C5) .

Then h. = G * ((9yhe)? + & — 4C5 Dche — (C5 + C5 + 4C5)).
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Convergence of the model

Theorem. If we choose

=0, ==, C5=dclogetes, C5=—crlogetey.
g

then the renormalised model (f[e e ) converges.

In the limit, the solution is parametrised by c¢3 + 4c4.

This is a general fact: there is a renormalisation group R such that
M. € R. If M. and N, are different renormalisation maps, then M. N_ !

converges to R € R and the two limit solution differ by the action of R.

The group R acts on the set of renormalised solutions.
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